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Project Summary

Project Title: Real-Time Aggressive Image Data Compression
Principal Investigators: Dr. Yih-Fang Huang and Dr. Ruey-wen Liu
Institution: University of Notre Dame

Address: Department of Electrical Engineering
University of Notre Dame
Notre Dame, IN 46556
e-mail: huang@saturn.cce.nd.edu

Summary

The objective of the proposed research is to develop reliable algorithms that, can achieve
aggressive image data compression (with a compression ratio of 60 times or more) for real-
time implementation. Typical applications of such algorithms include terrestrial HDTV
broadcasting, space communications, and handling and disposing of tcxic materials and
nuclear wastes with remotely controlled robots. The state-of-the-art techniques are ham-
pered by serious technical barriers of codebook design complexity.

The proposed approach is built on a vector quantization (V@) algorithm recently -le-
veloped by the PI. The codebook design complexity of this VQ algorithin is only linesrly
proportional to the codebook size (significantly less than conventic.aal alzorithms) and the
encoding complexity is independent of codebook size. Highlighting the proposed app -oach
is a piecewise-linear transform preceding VQ based on the concept of entiopy partitioning.

The novelty of the proposed algorithm is due to the follewing: (i) introduction of a
piecewise-linear transform to VO so as to retain more input informaiion; (ii) exploiting
both inter-block and intra-block redundancy; (iii) use of parallel distributed netwnik for
real-time codebook design.

The proposed research is significant as (i) it addresses the irnminent demands " solving
the aforementioned real-world problems; (ii) its accomplishment will alleviate the serious
complexity barrier of conventional VQ algorithms; (iii) it pushes forward the technical
frontiers of data compression.
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I. EXECUTIVE SUMMARY

This final report summarizes accomplishments and overall progress made during
the period of April 1, 1989 to March 31, 1990 for the research project sponsored by the
Office of Naval Research under Contract N00014-89-J-1788. It enlists publications and
Theses and Dissertations that have been sponsored, in part, by this research project.
A selected subset of the related publications is also included.

The objective of this research project is to perform fundamental studies on the
theory of selective update in signal and image processing. The approach is based on
selective use of input data in retrieving information of the underlying signals. The
selection will be based on the information content of the incoming data. Of particular
interests here are parameter estimation in adaptive systems. The significance of this
research project is that it is a timely response to the demand of higher level of machine
automation and man-machine interaction.

Over the last few decades, much endeavor has been made on improving the effec-
tiveness of data processing, particularly on integrated circuits technology. The advent
of very large scale integrated (VLSI) circuits technology has made available fast and
high density circuitry devices at lower costs. Processing of large volumes of data in
rea. time has thus become more feasible and cost-effective in practice. As such, mod-
ern signal and image processing calls for algorithms that are computible with such
technological advances. In particular, algorithms which can be implemented with
higher degrees of modularity, concurrency, and higher levels of machine intelligence,
thereby providing higher data-throughput rates, are more appealing in practice.

Most, if not all, of the efforts have been focused on the improvements of general
computational capabilities or the architectures of maneuvering arithmetic operations.
One critical issue which has often been overlooked is the extent of intelligence incor-
porated in the algorithms implemented. In particular, selective use of the input data
to improve the efficiency of information retrieval is as critical as improving the speed
of simple arithmetic operations. An essential reascn for the selective use of input
data is that it eliminates redundant processing, thus could improve significantly the

potential of modular concurrent processing. It also incorporates a decision-making
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procedure in the selection of data, thus gnhances the level and capability of machine
automation.

This research project concentrates on the context of adaptive signal processing
in studying selective use of information. The ground work upon which this research
project rests is a set of recursive parameter estimation algorithms, i.e., the so-called
OBE algorithms, which feature a discerning update strategy. This discerning update
is in sharp contrast to the continual update used by most existing algorithms.

The OBE algorithms belong to a class of parameter estimation/identification al-
gorithms termed Set-Membership (SM) algorithms. The SM algorithms use certain
set-theoretic type of a priori knowledge about the underlying model to constrain
the solutions to a certain set. In particular, the disturbance and the input signals
are assumed to be bounded in some sense. The OBE algorithms are, perhaps, the
most viable SM estimation technique in terms of analytical tractability and practical
appealingness.

The emerging field of SM-based signal processing has received considerable at-
tention and is becoming increasingly popular in the research community around the
world. Many special sessions at professional conferences have been organized and
special issues in professional journals have been published. It is clear that researchers
around the world are excited about the tremendous potential of SM-based algorithms
for applications to problems of practical importance. To name a few applications,
time series analysis, spectrum estimation, speech and image enhancement /processing,
biology and chemistry, and pharmacokinetics are among the more notable ones.

One of the striking features of recursive SM-based algorithms, thus OBE algo-
rithms, is a discerning update strategy for the parameter estimates. An important
outcome of such discerning updates is that the resulting algorithm can be implemented
with two modules: an information processor followed by an updating processor. The
former decides whether an update is needed, and the decision is based on the evalua-
tion of the " information quality” of the input data, the prediciion error, and the noise
bound. It is essential that the information evaluation involves very little computa-
tional effort, which is the case here. The latter then updates the parameter estimates

when the information processor decides that such is needed.
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Simulations on the OBE algorithms have shown, in general, that only less than
20% of the input data are used to update the parameter estimates. This is true
for most practical systems that can be modeled by autoregressive processes with
2xogeneous inputs (ARX) or autoregressive moving average (ARMA) processes whose
order is less than ten.

Conceptually, thanks to the modularity and to the fact that only less than 20%
of input data are used to update the parameter estimates, an adaptive signal pro-
czssing network may be constructed. The network will consist of a number of such
modular recursive estimators, each of which is comprised of two modules, namely,
the information evaluator and the updating processor. As such, idle time of both
the information evaluator and the updating processor can be reduced, thus the data
throughput rate will be increased. In addition, the reliability of signal processing can
be improved greatly. In essence, this type of adaptive networks will be able to pro-
cess multi-channel adaptation and filtering, improving reliability and data throughput
rates. Oue of the important applications for this is adaptive array processing in sonar
systems.

In this project, several fundamental issues associated with this kind of estimation
algorithms are investigated. To begin with, investigations are conducted to extend
one of the OBE algorithms to the estimation of parameters of autoregressive-moving-
average (ARMA) processes. The resulting algerithm is referred to as the EOBE
algorithm. The ARMA process has been used to model signals encountered in un-
derwater array signal processing.

Among others, the issue of convergence for ARMA parameter estimation is of
critical importance to practical implementation. We showed that if the input noise
is bounded in magnitude and the moving average parameters satisfy a certain mag-
nitude bound, then the a posteriori prediction errors are uniformly bounded. Wi'h
an additional persistence of excitation condition, the parameter estimates are shown
to converge to a neighborhood of the true parameters, and the a priori prediction er-
rors are asymptotically bounded. In contrast, the conventional algorithm of ertended
least-squares requires the strictly positive real (SPR) condition to assure convergence.

It is worth mentioning that an important virtue of this EOBE algorithm is that.




under rather mild conditions, the bounding ellipsoids always contain the true param-
eter, providing a 100% confidence region for the true parameter. This is a feature not
shared by other conventional algorithms which only guarantee that asymptotically.

Implementation on finite word-length processors is almost a mandate for all sig-
nal processing algorithms. We investigated the OBE algorithms’ performance in finite
word-length environment via simulations. In particular, the effects of roundoft error
accumulation and numerical stability were studied with fixed point simulations. Anal-
ysis of error propagation in an OBE algorithm is also performed which shows that the
errors in the estimates due to an initial perturbation are bounded. Based on these
results, we showed that the OBE and the EOBE appear to be superior to the RLS
and the ELS, respectively.

One of the possible reasons for such encouraging results is the discerning update
strategy which updates parameter estimates less frequently, thereby accumulates less
roundoff errors. Another reason is imbedded in the update equations which may re-
quire more detailed analysis. Nevertheless, these results further verify our conjecture
that eliminating redundant use of information, contained in the received data, would
reduce the effects of roundoff errors.

We further investigated one of the OBE algorithms in terms of tracking properties.
Conditions which ensure the existence of these 100% confidence regions in the face of
small model parameter variations are derived. For larger parameter variations, it is
shown that the existence of the 100% confidence region can be guaranteed asymptot-
ically. A modification of the OBE algorithm was also proposed to enable tracking of
larger variations. Qur simulation results have shown that the modified algorithm has
tracking performance comparable, and in some cases, superior, to the exponentially
weighted recursive least-squares algorithm.

In summary, our studies in this one-year project established the practical viability

of estimation algorithms that selectively use the input data.
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THESES AND DISSERTATIONS DIRECTED

The following is a list of masters theses and doctoral dissertations that had been

sponsored, in part, by the grant.

1.

(1]

Ashok K. Rao (Ph.D.) Dissertation Title: Membership-Set Parameter Estima-
tion via Optimal Bounding Ellipsoids. (Graduation Date: January 1990)%.

. Vincent R. Marcopoli (M.S.)

Thesis Title: Equation Error and Output Error Methods for Adaptive System
Identification. (Graduation Date: January, 1990)2.

RELATED PUBLICATIONS

. A. K. Rao and Y. F. Huang,

“Analysis of Fixed-Point Roundoff Errors in the OBE Algorithm”, Proc.
IEEE 1989 International Conf. on Acoust., Speech, and Signal Processing,
pp. 853-856, Glasgow, Scotland, UK, May, 1989.

. A. K. Rao, Y. F. Huang, and S. Dasgupta

“On the Bounds of the Estimation Errors of the EOBE Algorithm,” Proc.
32nd Midwest Symposium on Circuits and Systems, Urbana, IL, August,
1989.

. Q. Huang, D. Graupe, Y.F. Huang, and R. Liu

“Identification of Firing Patterns of Neuronal Signals”, Proc. 28-th IEEE
Conf. Decision and Control, pp. 266-271, Tempa, FL, Dec. 1989.

A. K. Rao and Y. F. Huang

“Tracking Characteristics of An OBE Parameter Estimation Algorithm”,
Proc. 24th Conf. Inform. Sci. and Syst., Princeton Univ., Princeton, N.J.,
pp. 17-22, March, 1990.

. A. K. Rao, Y. F. Huang and S. Dasgupta

“*ARMA Parameter Estimation Using a Novel Recursive Estimation
Algorithm with Selective Updating,” IEEE Trans. Acoust., Speech. and
Signal Processing, Vol. ASSP-38, No. 3, pp. 447-457, March 1990.

' This Dissertation had been included in the mid-year technical report submitted previously
*This Thesis is being included in this final report
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6. A. K. Rao and Y. F. Huang (Invited)

“Recent Developments in Optimal Bounding Ellipsoidal Parameter
Estimation,” Special Issue on Bounded Error Estimation, Mathematics and
Computers in Simulation, Vol. 32, Nos. 53 & 6, pp. 515-526, Dec., 1990.

7. A. K. Rao and Y. F. Huang

“Analysis of Finite Precision Effects on a Recursive Set Membership
Parameter Estimation Algorithm”, IEEE Trans. Signal Processing,Vol. 40,
No. 12, Dec. 1992, (to appear).

8. AK. Rao and Y.F. Huang

“Tracking Characteristics of An OBE Parameter Estimation Algorithm”,
IEEE Trans. Signal Processing, (to appear).
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-lbstract—'l'hts paper tmestlgates an extenston of a recursive esti-
mauon algortthm (the so—ealled OBE algonthm) l9l 111]. nhn:h fea-
tures a*dtscerntng update strategy In partu:ular. an extensron of the
algorithm 10 AR\IA parameter estimation is presented hefe along with
convergence analvsis. The: extenston is: Stmxlar to the e\tended least-

ares ll Mmore. eti'lcient e of the’ tnput data in térms of information
,proeessma. and 2)a modular adaptive fiiter striicture vwhich would facil-
ﬂ" ‘ifate’ thetdevelopment ol' a parallel-pipelmed s:gnal processing archi-
-fecture.-
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ditional perststence of excltation condition. the parameter esttmates
¢ the a priori predietion errors are shown to beé asy mptoticallv bounded.

EOBE algorithm is.comparable to that for the. ELS algonthm.

RO JINTRODUCTION

N ‘many. adapuve sxgnal processmg apphcauons. such
as speéch. procéssing, seismic data processing, and

()bl The signal y.(r) can theretore be: modeled as an
autoregressive moving averagé (ARMA) process .of the

forfr .
W)y =apte= 1)+ o +av(t = n) + w(t)

+oepwlr = 1) & #o Fcow(r = ). (11)

‘Fitting this ARMA tnodel to the:measured-data y(1).1 =

*1' 2. .-réquires the.estimation of the parameters @

s Gpe €12 7" 0 sc Many methods. for the estimation

of A\R\AA parameters have ‘been proposed in the litera-

‘ture, particularly: ffom.the spectral estimation. viewpoint.

Among the inore recent are Cadzow's overdetermined. ra-

Manusenpt received Aprit 30. 1988. revised May 4 1989 This work
was supported in pan by the Nauonal Scieice. Foundation under Grant MIP-
ST-11174: m part by the Otlice ot ] Naval Research under Contract NI 14
$7-A-U283, and-m part.by the \lauon.xl Science Foundation under Grant
ECS-8613240.

AL K. Ruo4s-with COMSAT Laboratories. Clarksburg. MD 20871

y.-F. Hu.m\v 1 with' the.Depanment-ot Electnical and Computer Engi-
acenng. Lnnemu ot-Notre Dame. \otrc Dame. 1N 6350

S. D.m.upm i wath the Department of Elecirical and Compurer Engi-
acering. Lniversnty ot lowa. fowa City. 1A 32242
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squares. algortthm. However. the convergence anal\sns is complleated‘
“due.to the: diseermng update. strateégy. which mcorporates an informa-.
tion-dependent updating factor: The vnrtues of suchan update siratepy:

It is shown in thts paper that if the lllplll noise is hounded and

are shown to converge.to a neighborhood of the true parameters. and.

Slmulation fesults:show. that; the .parameter estimation error. for. the-

ehannei equahzauon a signal'y(¢)-is often considered as
‘the output of-an:1IR filter- driven by unkniown white noise-
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tional- equauon method. 12]. the spectral matching tech-
nique of ‘Friedlander and .Porat . [3] and the extended
Yule—Walker method of’ Kavéh [4). A conimon feature of

“these. riiethods isithe: use of the: sample autocorrelauon se-

quénce-of the-output-process ¥(r). In: the context of’ sys-

temr 1denttﬁcation. the extended" least-squares (ELS) the

recursive -maximum likelihood. (RML), and-multistage
least-squares algorithms have.been used.to recurswely és-
timate. ARMA parameters [D] {6]: {12]. The ELS aigo-
nthm :uses+the- d-posteriori: predxcnon SITOT - €(t). as-an.
estimate- of w(r). The regressor vector. is-formed- from
y(t=1), - y(r-n)ande(r = 1); - - - 5€(2 = F).
The -standard récursive :least-squares (RLS) ajgorithm is
then empioyed 10 apdate- the estimates: The algorithm is
conceptually simple-but. restrictive in the sense-that con-
vergence of the algorithm can be' asstred: only if the un-
derlying, transfer furiction H(q™') = I / Cg™ = 1/2
is- strictly positive teal. (SPR). with: q” "being the- delay
.operator and

C(q™) = (1.2)

The. RML algorithm. whigh - -uses a filteréd version of
the regressor vector used*in‘the: l:LS algorithmi, does not
fequire: H(¢. ') tobe- SPR. However, the estimates have
to-be monitored- and prolected into a stability -region to
ensure convergence [5].

In addition to the aforementioned lzast-squares based
.methods, there exists a different class of.estimation al-
gdorithms -that estimate membership sets.-of parameters
which are consistent with the measurements and noisé
constraints .[7]=[11]. These algorithms are particularly
useful when the -noisé distribution is-unknown but con-
straints in the form of bounds on the instantaneous values
of the noise are available. To the best of our knowledge.,
none of the algonthms-has been applied to the:problem of
ARMA parameter estimation. Among these algorithms
based on membership sets. a group of seminal recursive
aleomhms are the so-called optiinal bounding ellipsoid
(OBE) algorithms [9)-{11]. The OBE algorithms have
been developed using a set-theoretic formulation and are
applicable to autoregressive with exogenous input (ARX)
models with bounded noise. One of the main features of
these temporally recursive algorthms 1s a discerning up-
date strategy. This featuie. obtained by the introduction

L+ag ™ +af™+ - +cq™
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of an. information -dependent gpuating: foreetting tacior.
_\xelus a,quulgr structuge theredy increasing the potential
4or concurrent and.pipelined processing of signals. The
presence. of such:a- forgetting factor also gives the aigo-
Tithms the-ability. to-track slowiy time varving parameters.
One. of the-aigorithms [11] has beén.shown 10 possess the

* advaitageous feature of> automatic asvmptotic cessation

of updates if-the:model istime invariant. If a loose upper
‘bound.on the:noise magnitude.is known..and if the input
is’ persnstemly exciting and.-sufficiently- uncorrelated with
the:noise, thien it has‘been shown in {11] that the param-
~<ier estimates converge asymptotically to a newhborhood
“of. the true parametér vector.

(n this paper. we extend one of the OBE algorithms [11].

o the. ARMA case. For the ARMA: parameter estimation
problem, the OBE algorithm cannot be applied.in its pres-

ent-form. .However:. by assuming:that the input white noise-

is bounded in magnitude, the OBE. aloonthm can be ex-
tended- in a. manner similar to the - ELS algorithm. Con-_
vergence analysis;of the resulting aigorithm is performed
‘by imposing a ‘bound on the sum of the” magnitudes of the
‘MA coefficients. This ensures that the true parameter vec-

tor is contained-in all the optimal bounding éllipsoids. A
uniform. bound on- the a posteriori prediction error can
then-be derived. In-contrast. even though the a postermrz
prédiction. errors are generated in a stable fashion-in-the

ELS algorithm- (5], itis difficult to obtain-an expression

for even:the asymptouc bound.-if 'such a bound exists. By
imposing a persistence of excitation condition on the.re-
.gressor veéctor,. the a przorz prediction- error of thé: ‘exa
téended. OBE algorithm is shown to" be bounded and the
.parameter estimates are- ShOWn to convergé to a neighbor-
hood of (he true parameter. vector.

‘The paper is organizéd in the following manner. In"Sec-

tion-I. a'brief réview of the.OBE algorithm.and its prop--

efties is presented. In Section III, 'the aigorithm is ex-
tended -to ARMA parameter estimdtion. Convergence
analysis of the extended algorithm 1s performed in Section
IV. The performance of the-algorithm is compared to the
‘ELS dlgorithm through -simulation studies ‘in Section V.
Section VI concludes thé: paper.

I[I. THE OBE ALGORITHM
‘Consider the ARX model described:by
’,\‘(1) = vt~ 1) +

= bu(r — 1) +

= dy (= n) + boul(r)

- butt(t —m) + (1)

shere ¥(r) is the output. w(t) is the measurable input.
and (1) represents the uncertainty or noise. The above
equation can be recast as

v(1) = 5Td (1) = ¢(1) (2.1)

where

r
={apdy 0 cdy Docbi by

RIVA P F U S PRRIIER /1 § A ml]

1> LC TRErEssor VECTor. A el gssumption iiere s that the
.aere L‘(lblS g =

=2y e L =) I

itoise 15 pounded-in magmiude. :

0. such that
for all.. hence. l :
(\H)—’)“r‘bltl) 5 ‘
Let S, be a subset of the euclidean space R"~" "', deﬁhed'

. )
S

o) £

by
S = {0: (;\'(I)\ —"()rfb(r)r < _"".‘); OE,“R!""',-I}.

From a geometric.point of view. S, is a convex polytope'
1n the parameter space and contains the vector of true pa-
rameters. The OBE algorithm starts off with a large el-
lipsoid. Ey. in R"™™* v which contains all possible values
of the modeled parameter §%. After the first observation
v(191s acquiréd. an ellipsoid-1s found:which bounds the
intersection .of -E, and the convex polytope §;. This el-
lipsoid. must be optimal in:some sense. say minimum vol-
ume {9}, [10] or by any other critetion {9], [L1]. to hasten.
convergence. Denotmg the optimal ellipsoid -by E,. ong,
¢an procéed exactly as before with the future observatlons'
and obtain -a- sequence of optimal -bounding ellipsoids
{E,}. The center of the ellipsoid-E, can be taken as'the
_parameter -estimate at the rth instant and- is denoted:b
6.(z). If at a particular.time instant-i. the-resulting optima
bounding ellipsoid would be-of a **smaller size,"" theréby
implying that the data point.) (i ) conveys-some fresh **ing
formation"" regarding the parameter estiniates. ‘then th

.parameters are updated. Otherwise. E, is setequal to'E, _

and the parameters are not: updated’ [t can also be shown

[11} that all-the ellipsoids | £.. ¢ <200+ -} contai
the true parameter 6*. provided: thal E.. does.
Let the ellipsoid E,_, at-the (1 — 1)th instant be for-

mulated by ' '
Eov={6:(0 =800~ 1) P = 1)
(0 —8(r=1)) =

ot = D} 12 2'
for some positive definite matrix P{z = 1) and a nonneg® -
ative scalar ¢°(1 — 1). Then. given v(¢). an ellipsoid
which bounds £, (1 S, "“tightly"" is l

r :

{0: 10 = N)(8 = 0t = 1Y P = 1)
19 = Bt - 1)) = Mt = 8T .
< (1= N)o*tr = 1) = Ava) (2.3

where the forgetting factor A(1) satisfies 0 = Nio) < l'
The size of the bounding ellipsod is related to the scala
o*(t — 1) and the eigenvalues of P(1 = 1). The update
equations for §(7). P(1). and ¢(1) are derived in (1 l'
The opumal cilipsoid which bounds the intersection ¢
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. E.., aid S, is detined. in teims of an.optimai vaiie o A
: 'Foune OBE algorithm.or- {§1]. the optimum value A s

determined by: minimizing o=( r)-with-respect to A, at even

time instant: The minimization procedure results in A"

being set equal to zerd (rio-update) it

o1 = 1) = 5°(1) < ;. {2.4)

If.(2.4) is not satisfied. ther the optimal value of ), is
computed. The parameter estimation procedure i$ de-
picted.in Fig. I. An outgrowth of this modular recursive
estimation procedure is a parallel-pipelined networking
structure<{13]. The algorithm is such that the computa-
tional complexity of the information evaluation (IE) pro-
cedure is much less than that of the .updating procedure
(UPD). Since, in general. a good number of data samples
would be rejected by the IE. both the IE and the UPD
would involve significant.amounts of idle time. A viable
scheme then-ie-to conqgure a parallel-pipelined network
comprising of such modular estimators to precess signals
from- multiple channels. Apart from reducing hardware
costs. such a scheme would offer increased reliability
since the failure of one UPD processor would not cause
any of the channels to fail, in contrast to a system with a
dedicated UPD processor for each channel.

[II. ExTensioNn To ARMA MODELS

The ARMA model described by (1.1) can be rewritten
as

w(t) = y(t) - 8%7®' (1) (3.1)

where 0*, the vector of true parameters, and ¢’ (r) are
defined by

0* = [ay. aa, * -

I ‘b,(f)=['\'([— l)"
vit = 1).

T
s Gy Cps Cae "7 " Cr]

y(r = n).
CLow(r - r)]T.

Here again. w(r) is assumed to be bounded in magnitude.
. . [} e
i.e.. there exists positive v such that

wi(1) = vi. (3.2)

Since the values of the noise sequence {w(r)} are not
available. the regressor vector ¢'(r) is not known ex-
actly. [f. however, at time 7. an estimate of 6%,

0(1) = (1) o). en]
(3.3)

is available. w(r) could be estimated by the ¢ posteriori
prediction error

* L a,(1)

elr) = »(1) = 87(r) ®(1) (3.4)
where
(1) =[y(r~1). . x(r = n).
dr=1. et =n]. (35)
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Fig. 1.

A IEdUIar recursive estimator.

Now just as in the ARX case. define for some suitable v:
the convex polytope

={o: (x() -~ (1)) =+ ger™)
and the bounding ellipsoid
E={0eR"" (0~ 6(1)) P~'(1)(0 = (1))

= o'(t)}.

The : adate equations for 6(¢), P(r), and o*(r), which
then tollow directly from [11], are as in the ARX case.
with the only difference being that the regressor vector is
now given by (3.3):

P'(1) = (1 = NP~ (e = 1) + \®(r) #7(¢) (3.6a)
0(r) =0(r = 1) + NP(r) ®(1) 6(1) (3.6b)
8(r) = ¥(r) = 87(r = 1) &(1) (3.6¢)
o2 (1) = (1 = N)a?(r = 1) + \y?

where

G(t) = &7(r) P(r = 1) ®(1). (3.6e)

The matrix inversion lemma can be used in (3.6a) to ob-
tain the following recursion for P(t):

P(1) = l—-_l—f[p(z -1

_AP( = 1) 2(1) d7(1) P(t
[ =N\ + NG(D)

”]. (3.6f)

As n the OBE algorithm. the bounding elhpsonds are op-
timized by choosing A to minimize ¢ *(1). In order to
facilitate the subsequent analysis. the initial conditions are
modified to

P(O) = MI, _,. and 0710) = 57 — ¢

(3.7)

where M >> 1. ¢ << 1. and I, ., is the identity matrix
of dimension n + r. This choice of initial conditions en-
sures that the initial ellipsoid £, will contain the true pa-
rameter vector 8* and. more importantly. as shown in Ap-
pendix A. simplifies the optimum forgetting facter

0(0) =
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TANS AT AN
) Jete‘r‘rmﬁzitioﬂ* formuia-io
": ’ta{l—ﬂ—o(.) A
3 Khe‘.‘-‘: = L3}
{4 el -o;herivise
[T =h
-G =L 13.90)
0 [Tem
_ L=GEL AL+ B(0(G(1) = 1 )
( o if Gle) = | 13:9b)
where
. o LY=ot~ 1) o
} . 3(’)‘- - 5_&(” (3.)(.‘
“-Remarks:

) Jtis shown-in:Appendix-A-that if ¢ =1y = 8%
> ¥*. then:xf given by (3.9) sausties

do=(1) =0
(I )\, )\,a}\;

and furthermore, 0 < N < 1, Thus. unlike {11}. no up-

per bound need be 1mpo¢ed on the forgetting lactor.

2) Since o3(1) = o(r ~ 1) if NS = 0: any nonzero
value of N which minimizes ¢ (1) wilt cause o () <
g (t - 1), Thus, choosmg X¥ to-minimize .0°(t) causes
{o%(1)} to be a nonincreasing sequence,

The recursive refations (3.6), the initial conditions
(3.7), the selective update strategy (3.8). and the forget-
ung factor determination formula (3.9) form the Extended
Opuimal Bounding Elipsoid (EOBE) esumation algo-
rithm [14]., The choice of the threshold +° will become
clear from the analysis below. The algorithm retains the
discerning update strategy and the modular adaptive filter
structure of the OBE algorithm {11}. [13).

IV. AnaLysis oF THE EOBE ALGORITHM

The main difficuity in the analysis of the EOBE algo-
rithm arises from the presence of the a posteriori predic-
tion errors in the regressor vector. Unlike the OBE algo-
rithm. in this case. boundedness of w(r) does not
guarantee that all the convex polytopes S.. 1 = 1, 2.

. will contain 8*. The first step in the analyvsis is 10
nind condittons under which this happens. The munimi-
zation of ¢7(7). at every time instant. and the choice of
initial conditions (3.7). facilitute the characterization of
the behavior of the a posteriori prediction errors.

Lemma 1. For the EOBE algorithm of Section I, if
oMt = 1)+ 6% >4 e ifan update occurs at time
instant ¢, then

i) o7t1) = et = 57 (4.1

TR WO AARCH e

or ol e mstants A < q o2 2

&)

1A

dr o i)

and i 7 = 7 1 the tume msiant at which the next update
oceurs. then
i) e'h) = Uty dorailk <o+ (4.31
Prooy:
1) It has been shown in Appendix A that if ¢ =11

~ $°(1) > v~. then the optunum forgetting factor N sat-
isfies
lo*(1t
CALL BN (4.4)
dN

Taking the dérivative 1 (3.6d) and using ¢4.4) yields
_ A)8(1)
I~ N+ NG
___NS(OGU)
{1 = A+ \G(1))
which can be rewritten in the form
(1 =N\) = NG(1)
(L =N+ NG
In (4.5) and in the remainder of the paper. when there is
no risk of confusion. the optimum forgetting factor |
will be denoted by A,. It is also easily shown from (3.6b),

(3.6¢). and (3.6f) that the a posteriori and a priori pre-
diction errors are related by

Y
P =a + NGl

Note that the nonnegativeness of Gi¢) implies that € (1)
< &°(1). Substituumg 14.6) i (4 5b) and rearranging

v =0l =)

k]

¥ =01 = 1) =6%1)

(4.5b)

(4.6)

e(r) = o(t).

terms vields
(1= N)y" =1l =\)otr = 1)
s NGl (1)
= (1 = Aje(r) N

Now using (4.6) in ¢3.6d) gives
o) =l = Mot = 1) + Ay

NG()

+.
L% (4.8)

- ,\.e:lr) - ezlt).

Finally. subtracung 4.8) from (4.7} gives (4. D),

1 Cuse . It A < ¢ > an updaung instant. then 4 D
gives

gk} = etk) = ~". i{4.9)
But since {6-17)} 15 a nomincreasing sequence. (4.9 and
(4. 1) together would 1mply that
k) =
10
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RAQ..* LRMA PARAMETER HSTiMATION
(,use itk g iisa nonunuaunu Instant. nen $Tia

=4 M) and 50 by (3.8). o7k — 1) = c‘l') < - coand

sifice ¢~ (1 iss nomncrc;asmg es(ky < e,
iii)ﬂSince;\L =7+ lor+=20 0 f =) =1 are

all zero. o™ty = (1), forall 1 < & <t +j. And be-

’LZ\USC/\ is a nonupdauno instant..o°(k = 1) - ¢1k) =

o31) + (k) < ~°. and 50-(4.3) follows.

We can now uvnve sutﬁcnqnt conditions under which
:he convex: polyt(opﬂes S, and E, will contain 6%,
~ Theorem |: The convex polytopes S, and consequently
. will contain the true

1) Ep contains 6%, {4.10a)
{i) the true moving average coefficients satisty

r 2
[Zl lc,-l] < 0.5, (4.100)
=
iii) the threshold v? satisfies
[l + El [c‘,i]
+ 2 | 293 (4.10¢)

e

-, —

Proof: Let the induction hypothesis be 6* € E, ..
Then defining

V(r) = (6() = 0%) P (0)(6(1) - 0%) (4.11)
and recalling the definition of E, _; yields
Vit -1) = o’(r = 1) (4.12)

and since P ~\(1) is positive definite for all 1. a%(¢ = 1)
>N°6w using (3.1) and (3.5)
(vt} = 070 (n))’
= (™) [w(0] = (cla™) = D]ew)])
where the operator C(¢™") has been defined in (1.2). De-

fining n(1) = C(q")[w(t)]. and recalling an elemen-
tary aigebraic inequality

(@ ~b) =2a° +2°
vields

(x(0) ~ 5Td{1))" < 20%(1) + 2(celt = 1)

—caelr = 2) v = el — ). i4.13)
But
wte) = 470 forallt
where
5 =’~,.-,<1 AN ) i4.14)
-4

-3
Henee.
i) - w‘-"@m): =0 =20 et =1
s el =21 = = e et - )
(4.13)
But by Lemma . it ¢+ — ' 15 the updating instant imme-

diately preceding time tnstant ¢, then

et ~d) S eli =) forl si=r
Thus

(v(1) = %70 (1))

IA
=2
i
i
[§%)
.
[ >
S
\__/‘
o
!
e

< 47 2<.§1 %cil>-(7: - o*(1 = 1)).

Smcee’(t-j)—y —o(t-J)—y -0t = 1).
Now by the induction hypothesis. o~(7 = 1) = 0. Hence.

2( é ]c‘,l)-yl. (4.16)

So the convex polytope S, will contain 6% if

SECTIE

The inequality (4.17) will hold iff (4.10b) and (4.10c) are
true. Assuming (4.10b) and (4.10c) thus guarantees that
for all time instants ¢

(x(0) = 072 (0)) =
Using (3.6) and (4.11). it can be shown that
(L =MVl =1 =0otr = 1)
(4.19)

(1) = 078 (1)) = +*

(4.17)

(4.18)

V(1) = o*(1) <
= N[(x() = 6=Ta(1)) = 47

and so from (4.18) it follows that

V(t) = o(1) = (1 = M)V = 1) — o7 = 1)).
{4.20)
Finally. by (4.12). it follows that
Vi) —o™t1) < 0 (4.21)

r.e.. E, contamns 6%, and (1) 15 nonnegative for all .

Remarks:

1) The assumption (4. 10b) says that the noise sequence
ntry = C(q~"1[wn)] should not be “"100 colored.™ This
condition 1s analogous to the Strictly Posiuive Real (SPR)
condition which appears in the ELS algorithm (cf. Section
D). It is not very difticult to show that for the SPR condi-
tion to hold. it is necessary that

14.22)

11
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1t can also-be seen that conation (4, {Ub) 1» ¢ stricter torm
of the Strictly Dominant Passive (SDPY condition 413}
which appe. +s in the analysis of some signed LMS aigo-
tithms. and trom [15]. 1t follows that (+.10b) is sutiicient
for the SPR condition to hold and hence is more restrictive
than the SPR condition.

2) Selection of the right “*noise bound™ < 1s made
possible by (4.10c). The user would. however. need to
have some knowledge of the magnitude of the true mo:-
ing average coefficients. Simulation results show that
overestimation of v * has very little effect on the parameter
estimates (centers of the bounding ellipsoids). although it
may have an adverse effect on the size of the bounding
ellipsoids.

3) The conditions (4.10b) and (4.10c) are not neces-
sary conditions, and the algorithm has been observed to
perform well in several examples where these conditions
were violated.

The following result follows straightforwardly from
Lemma | and Theorem 1.

Corollary I: If the conditions of Theorem 1 hold then

a) lim ¢°(1) exists 14.23a)

ye oo
where {1} is the subsequence of updating instants of the
EOBE algorithm, and

b) uniformly bounded a posteriori prediction errors
e(1) = ¥°.  forall time instants r.  (4.23b)

Boundedness of 62( t), the a priori prediction error, and
convergence of the parameter estimates to a neighborhood
of the true parameter can be assured by requiring the re-
gressor vector to be persistently exciting. The next lemma
relates the positive definiteness of P ~'(1) to the richness
of the regressor vector (7).

Lemma 2: 1f there exist positive oz and NV such that. for
all 1

-~

'—
S () d7(i) = axl > 0. (4.24a)

=t

then there exists a positive «;, such that
P~Yt) = asl > 0. (4.24b)

Proof of the lemma 15 the same as that of Theorem 4 1 of
[11]. it is thus omitted here.

Remark: The positive definiteness of P ~'(1) implies
that the eigenvalues of P(7) are upper bounded.

Theorem 2: If the assumptions of Theorem 1 are sat-
isfied and (+.24a) holds. then the EOBE algorithm en-
sures the following.

a) Parameter difference convergence

im 0(1) -6t = k) =9

for any finite . (4.25)

SIS, P AN . B ARCH

oA IMDIOUCGGY ToURded Dardimeier estimation -
rors

By = T =0 200 = e 0 al) 14260
where ~ 5 and o, are as 1 €3.2) and (4.24b). respectively
<) I, in addiuon, the process (1.1} is stable. then the

algorithm yields asy mptoucaily pounded a priori predic-
tion errors

sctn) — [0.57). (4,27

Proof:
a) From (3.6b) and (3.6%)

10(e) = 0(r = 1)1
MO () P = 1) (1) §7(1)
(1 =N+ NGO

NGOo() (4.39)'

(4.28)

= em.xx{P“ - ”} - S
(1 =N+ NG(1)

where ¢, § P = 11} is the maximum eigenvalue of
P(t = 1). and | - ' denotes the Euclidean norm. Using
(3.6d) in (4.52) yields

N 6%(0) G(1)
(1= N+ MG()

o*(1) = o*(t = 1) = (4.30)

The nonnegativity of ¢°(¢) therefore implies

¢ N6¥(i) Gli)

e
=1

< = 0"(0) - 03(!) < oo,
(1 =N+ NG(D))

(+.31)
Hence.
N6y Gl

lim = =0, 1430
==l = A = NGH1))

If (4.24a) holds. then by Lemma 2. ¢, { P(1 = 1). the
maximum eigenvalue ot P(z — 1), is bounded for all 1,
and hence (+4.29) and (4.32) vield

9(r) ~ #r = 1)1 = 0. (4.33)

Applying the Minkowsht inequality to 8 Ay -
)1l and using (+.33) completes the proof of (4.25).

by Using 13.61. 1. 11). und (4.6). an expression similar
to (4.19) can be derived as

P(r) = (1 = MVl = 1) = My (Clg ™ [win]
-(Clg = Nfenn])

1 - A - AG(D ()
- [3 .
=Y j (4.34)

12 4




FEE TR

It can also be seen that condition (4. 1Ub) 13 ¢ stncter tarm
of ‘the. Stricily Dominant Passive (SDPY condition ¢15]
which appe. .5 in the analysis of some signed LMS aigo-
fithms. and from [135]. 1t follows that (4.10b) is sutiicient
tor the'SPR condition to hold and hence is more restrictive
than the SPR condition.

2) Selection of the right “'noise bound™™ % 1s made
possible by (4.10c). Thé user would. however. need to
have some knowledge ot the magnitude of the true mo:-
ing average coefficients. Simulation results show that
overestimation ofy* has very little effect on the parameter
estimates (centers of the bounding ellipsoids). although it
may have an adverse effect on the size of the bounding
ellipsoids.

3) The conditions (4.10b) and (4.10c) are not neces-
sary conditions, and the algorithm has been observed to
perform well in several examples where these conditions
were violated.

The following result follows straightforwardly from
Lemma 1 and Theorem 1.

Corollary I; 1f the conditions of Theorem 1 hold then

a) lim e(r)) exists 14.23a)

b”'m
where {(;} is the subsequence of updating instants of the
EOBE algorithm, and

b) uniformly bounded a posteriori prediction errors
e(1) = ¥° (4.23b)

Boundedness of 6%(1), the a priori prediction error, and
convergence of the parameter estimates to a neighborhood
of the true parameter can be assured by requiring the re-
gressor vector to be persistently exciting. The next lemma
relates the positive definiteness of P ~='(1) to the richness
of the regressor vector $ (7).

Lemma 2: 1f there exist positive o and N such that. for
all 1

for all time instants 7.

=N
2 B(i)¢T(i) 2 el > 0. (4.24a)
=t
then there exists a positive «, such that
P7(1) = aul > 0. (4.24b)

Proof of the lemma 15 the same as that of Theorem 4 1 of
[11]. it is thus omiued here.

Remark: The positive Jefiniteness of P~ '(7) implies
that the eigenvalues of P(r) are upper bounded.

Theorem 2: It the assumptions of Theorem | are sat-
istied and (+.24a) holds. then the EOBE algorithm en-
sures the following.

a) Parameter difference convergence

lim 8(t) =8t = k) =90

for any finite X. 14.25)

' SR ARC ¥
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rors

Brey — e T = T, 2l =Yoo v -‘_i 14,264
where 4 3 and e are as 1 (3.2) and (4. 24b). respectiveiy
¢) Hf. i addiuon. the process (1.1) is stable. then the
algorithm yields asymptotically bounded « priort predic-
tion errors
5ty — [0.4°]. (4.27)
Proof:
a) From (3.6b) and (3.6f)
h0(e) = 00 = Dy
N@ (1) P (1 = 1) d(1) 67°(¢
=;,(i>() { ) ():() (1.8}
(1 =N + NG(D)

NG 8% ()
(1= A+ NG(O)

where eq, { P(1 = 1} is the maximum eigenvalue of
P(t = 1), and { -’ denotes the Euclidean norm, Using
(3.6d) in (+.52) yields

S ewa P = 1} (4.29)

o (1) = a1 = 1) = A6%(1) G(1) )
(1 =N+ NG())

(4.30)

The nonnegativity of ¢*(¢) therefore implies
5 N8 Gi)

<= 06%(0) - 07(1) < =,
= = N+ NG

(4.31)
Hence.

i —220 6 s
== (1 = A = AG(1)

If (4.24a) holds. then by Lemma 2. ¢, { P(1 = 1), the
maximum eigenvalue of P(r — 1), is bounded for all ¢,
and hence (4.29) and (4.32) vield

"9(r) = #(1 = 111 = 0. (4.33)

Applying the Minhowsht inequality to "8 Ay -
L) il and using (+.33) completes the proof of (4.23).

by Using 13.6). .11, und (4.6). an expression similar
10 (4.19) can be derived as

Viry = (1 = XVl = 1 = Ay [Clg i)
-1Clg = Nlen]y

Y € j

(4.34)
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Just as mtite proot of Theorem i. 1+4.3+4) van ¢ eapressed

.as

P(r) £ (1 = M)V = 1) = Ay

r . :
! N
+ ,\,[2( Z‘ c‘,é) ettt — )

L=\ FAG)

=N e(1)

H (+.35)

where y'% is as in (4.14). and ¢ — j is the updating instant
immediately preceding time instant . Assume ¢ is an up-
dating instant, Then (4.10b), (4.2), and the nonnegatvity
of G(r) would imply that the term in square brackets on
the right-hand side of (4.35) is not positive. and so0

V() = (1 = NV = 1) + \y"™ (4.36)

It is obvious that if ¢ is not an updating instant. then (4 36)
would still follow from (4.35). A nonrecursive form for
(4.36) can be obtained as

{ 1]
wnsﬂﬁl—mwm+7¢§% (4.37)
& =

where

{xi(l = M) o (1= N),
QG =

N i=1
For large ¢, the first term on the right-hand side of (4.37)
can be neglected. In Appendix B. it is shown that

1
T <L, (4.39)

Hence, for large enough ¢

~

V(1) = (8(1) = 0%) PY)(0(1) = 0%) = "
(4.40)

And so (4.26) follows from Lemma 2 and (4.14).

¢) Stabihity of the process (1.1) and the boundedness of
w(r) implies that the outputs »(7) are bounded. Hence.
from (3.6e). (4.23b), and Lemma 2. it follows that

G(r) = e,,m{P(l - l)}[r‘y: +n max ()]

t-nsis1~1

< ® {(4.41)

where n 15 the vrder of the AR process and 7 15 the vrder
ot the MA process. It van now be shown, just us 1n Theo-
rem 3.2 ot [11]. that the « privrt prediction errors satisi)
4.27).

Remarks:

1) The resuits ot Theorem . and the resuits «4.25).
14.26) ot Theorem 2. do nout require the process to be std-
ble. However. 1t the provess 1s unstable. then un account
of finite precision eftects. the matnx P(r) may not stay

=53

Cusiive celilife. LaUs b ulidating e noton ot hounding
JHIDSOIAS and causing the gorihm to fail. In this situa-
uon. the ELS algonthm wiil mi. t0o.

1) Theorems | and 2 o not 1mpose any statistical
properties on the input noIse sequence {wr) }. However.
our simulation experience has been that the parameter es-
tmates are usually not close to the true parameters if the
noise 1s not white. Of course. such is also the case for the

ELS algorithm.

V. SimuLATION RESULTS

Simulations have been pertormed to investigate the per-
formance of the EOBE algorithm vis a vis the ELS algo-
rithm. In this paper. we present simulation results for two
examples—a broad-band ARMA (3. 3) process and a nar-
row-band ARMA (2. 2) process where the indexes n, r in
an ARMA (a. r) process reter to the orders of the 4 (g™")
and C(¢~") polynomials. respectively.

Example |—Broad-band ARMA (3. 3) Process: The
output data { v(7)} are generated by the following differ-
ence equation:

—04x(r = 1) = 0.2x(1 = 2) + 0.6p(1 — 3)
+w(r) = 0.22w(1 = 1) + 0.17w(r — 2)
- 0.1w(r = 3).

i) =

The noise sequence {w(r)} is generated by a pseudo-
random number generator with a uniform probubility dis-
tribution in [ = 1.0, 1.0]. The upper bound 'y: was set
equal to 25, The parameter estimates were obtained by
applying the EOBE algorithm to 1000 point data se-
quences. Twenty-five runs of the algorithm were per-
formed on the same model but with different input noise
sequences, The average squared parameter error Ly(7) is
computed for the AR coeflicients according to the formula

ba

&

11

Lin) ='l-

3, L{r)

B

where /,(1). the squared AR parameter error at time ¢ for
the jth run. is defined by

a

?:l ((l,({) - (l,)-

L(1) =

with «, and «,(7) being defined by (1.1) and (3.3). re-
spectively. The average squared parameter error Ly(1) for
the MA coefficients is defined unalogously Figs 2 and 3
display the uverage squared esumation errors for AR and
MA parameters asing both the EOBE und the ELS algo-
rithms. The curves show that the performance ot the two
algonthms 1s comparable. The average number of updates
for the EOBE algorithm was 160 for 1000 point data se-
quences. Thus. only 167 of the samples are used for up-
dates. as compared to the ELS algorithm which updates
at every sampling instant.
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Fig. 2. Average squared AR parameter estimation error for the EOBE and
ELS algorithms—Example 1.
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ELS algorithms—Example 1.

Fig. 3. Average squared MA parameter estimation error for the EOBE and

TABLE |
Total Number  Total Number Average Average
Upper Average  Average Number  of Times 0* of Times 64 Final Final Sum
} Bound ¢ Tap Error of Updates 1s Out of' S, 15 Out of £, Volume of Axes
0.5 0.031 160 7309 23952 - -
1.0 0.031 160 s 0 0.22 10,46
20 0.031 160 0 0 26 % 10° e
5.0 0.031 154 0 ] 54 x 10 263
25.0 0.031 153 0 0 21 x 10" 1837
100.0 0.0308 156 0 0 1.0 x 10" 6303

/ The effect of different choces for the upper bound
on the performance has also been studied. For each value

’ of v°. the asymptotic average squared parameter error T
was computed over 25 runs of the algonthm. according
to the formula

f ;

25
% 2 [6,1000) - 0|

where 6;11000) 1s the parameter estimate at the 1000th
deration in the sth run. The lower bound on §  as valeu-
lated from (4.10c) 15 4~ = 8.54. The second column ot
Table I lists the different values ot T obtained when " 1
{ varied from 0.5 to 100. It 15 clear that the centers of the
bounding ellipsoids are sensitive to the value of § .
since e tap error s almost constant. However. the final
‘ size of the ellipsoids does depend un y . The negauve

volume obtained when v° = 05 is an indication of the
fact that ¢’ (1) is no longer positive and so bounding el-
lipsoids cannot be constructed.

The performance of the algorithm. when the noise se-
quence {w(r)} has a Gaussian distribution. was evalu-
ated in a similar fashion. A constant value of ¥° = 25
was used and the standard deviation of the noise was var-
1ed. The results for 25 runs of the algorithm are shown in
Table II. It is clear that the unbounded noise has marginal
effect on the parameter estimates

Finally. the tracking capability of the EOBE algorithm
was compared to that of the ELS algorithm ( with forget-
ung factor = 0.99) The same model was used to generate
400 data points. The parameters were then changed by
150% and the next 400 points were generated Finally
the lust 200 ponts were zenerated by using the original
parameters. The average squared parameter error was
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A { = ECBEsy's 28, p R <,
3 A P10 = 1201 age number of updates was 78 tor 1000 point data se-
) T .10 : [AEY RN quﬁnces. .
2§ g "'w] For this example too. different values of the upper
. - ) « . . .
¥ 20 EOBE bound - were used and no significant difference in the
; o] -~ . . ‘ N
] ’J«\-M_‘ A x quality of estimates, number of updates or convergence
3 g 3ok i \M\,\ \,} rate was observed, Thus, it.is verified once.again that a
’ & bl N precise knowledge of the upper bound is not a prerequisite
9 , for satisfactory performance of the algorithm,
9 140* — . e
:_» 0 200 400 €00 800 000 . SN
3 Time VI. CoxcLusioN
3 Fig. 5. Average squared AR parameter estimation ersor tof the LOBE ang A recursive parameter estimation algorithm has been
ELS algorithms—Example 2. extended tor ARMA parameter estimation. The main fea-

wres of the algorithm are a membership set theoretic for-
mulation and a discerning updaie strategy. Convergence
analysis of the algonthm has been performed under the
assumption that the notse is bounded. The main results
ot the anal; s1s are that all the bounding ellipsoids will
contain the true parameter. provided the true moving
average coefficients satisfy a condition, which is analo-
gous to the SPR condition of the ELS algormhm. In ad-
dition. the algorithm vields uniformly bounded a poster-
wrt prediction errors, With a persistence of excitation
condition on the regressor vector, boundedness ot the u
priori prediction errors can then be established and the
¥ir) = L4yt ~ 1) = 9.950r1 = 2} = at1) parameter estimates are sShown to converge (o a neighbor-
= 0.86w(r — 1) = 0.4830w(r = 2} hood of the true parameters. Simulation results show that
the performance of the algorithm 1s comparable to the ELS
Note that. i this case, condition (4.10b) of Theorem | is  algornithm while requiring far fewer updates
violated. The noise sequence is uniformly distributed in
[ —1.0. 1.0}. as in the first example. The upper bound - APPENDIX A
was set equal to 25. The average squared AR and MA Proor o1 13.8) und (3.9): The proof is along the lines
parameter estumation errors are caiculated overtwenty fisve  of the proot of Lemma 2 1 in [11]

evaluated over 25 runs and is shown in Fig 4 Even
though the formulation of bounding ellipsoids is based on
the_assumption that the parameters are constant. the sim-
ulation results show that the algorithm is able to accom-
modate changes in model parameters. Analysis of the
tracking ability of the algorithm is currently under inves-
tigation.

Example 2—Narrow-band ARMA 12, 2) Process: The
output data { v(7)} are generated by the following differ-
ence equation:
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gL, N = 6. 0) = o': = 1) tA -
(10([) N N -

N " — ot = 1)

PETL =) ZNGU )
{1 =\ = ANG(1))
and

*0(t 26%(1) G(¢
tt;}\(z)= (1) G(r) N (A3)
i (l - N+ NG(0)

Thus. d>a*(1)/dN} > 0. unless 63(¢) = O or G(1) = 0.
Since P(r — 1) is positive definite. G(1) = 0iff (1) =
0. The algorithm can be modified to detect the occurrence
of a null ¢(r) and set it to a small nonzero value. prior
to the calculation of G( n. Thus. it can be assumed that
G(() # O-forall 7. If 6°(1) = O(a (1 = M+ 63(1) <

* in this-case). then. since 07(0) < ¥ by (3. 7) and
amce .@*(1) is nonincreasing. therefore, by 2)
do~ (t)/d}\ is positive, and.hence (1) is mxmmlzed if
)\* 0. Now. for the sequel, the second derivative of
¢ ( 1) can be assumed to be positive. and hence the unique

minimum occurs at do” (1) /d\, = 0. From (A.2), if G(1)
= 1, ¢*(¢) is minimized if
=(1 =~ B8(1)/2. (A4)

Otherwise, if G(t) # 1, ¢%{¢) is minimized if

N [{,_ G }
"T=6L N1 +8(G0) - 1)
{AS5)
Moreover. in (A.4) and (A.5)
N>0e3()<led(t-1)+5)>y
(A.6)

It is easy to show that ! + 3(1) (G(t) - 1)is always
positive. Since 0°(0) < v° and ¢°(1) is nonincreasing,
therefore. 3(¢) > 0. From (A.6). 3(1) < 1. hence | —
1/B(1) < 0. Then

1+ B()(G(t) = 1) = 0= G(r)
=1 =-1/8(t1)=G{1) <0

which is a contradiction. Thus. (A.5) would always yield

veal N7, [tis now shown thzf 1A.4) and (A.5) yield values

of N whieh are upper botnded by unity. If G(1) =

shensinge (1) > 0. (A vields N\ < L. IfGuny < 1.

then ! 2 1 & | — [GIny/(1 + 3()(G(r) — In]'?
- G(1)

=G)(1 + B(1)(G() = 1)) = 1 (A7)

But G(r) < 1 apd 3(¢) > 0 contradict (A.7). Hence. if
Gity < 1. wmen N < 1. It car be shown in exactly the
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ame way that Geo 0 vowd wapey mar AT << L Thas,
snlike the case m [ 1il. no upper bound has to be i nnpOsm

on the forgetting iactor.

ApPENDIN B
Prooy o 14.39) by Induction): Let

R(1) = § ir (B.1
Then
R(t) =11 = N)R(r = 1) + ) (B.2)
and
R(l) = )\| < 1.
Assume
R(tr—-1) <1,
Then by (B.2
Ry < (1l =N)+ 1=\,
i.e..
R(1) < 1.
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RECENT DEVELOPMENTS IN OPTIMAL BOUNDING ELLIPSOIDAL
PARAMETER ESTIMATION

Ashok K. RAO
COMSAT LABS, Clarksburg, MD 20874, USA

Yih-Fang HUANG
Department of Electrical & Computer Engineering, University of Notre Dame, Notre Dame, IN 46556, USA

The Optimal Bounding Ellipsoid (OBE) algorithms are viable alternatives to conventional adaptive filtering
algorithms in situations where the noise does not satisfy the usual stationarity and whiteness assumptions. An
example is shown in which the performance of an OBE algorithm is seen to be markedly superior to that of the
recursive least-squares algorithm, Subsequently, an overview of some recent work in the area of OBE parameter
estimation is presented. A lattice filter implementation of one particular OBE algorithm is first described, The
extension of the OBE algorithm to the estimation of parameters of ARMA models is performed and the resuits
of a convergence analysis are presented. It is demonstrated through a simulation example that the transient
performance of the proposed algorithm is superior to that of the well-known extended least-squares algorithm,

1. Intsoduction

In recent years, there has been a resurgence of interest in an alternative approach to parameter
estimation, which has been termed membership set parameter estimation by some authors [1,2].
This approach is particularly appropriate when the probability distribution of the disturbances is
unknown, and a bound on the magnitude of the disturbances is available {2,3). In contrast to
conventional system identification schemes (e.g. maximum likelihood, least squares etc. [4])
which yield point estimates of the parameters, a membership set algorithm yields a set of
parameter estimates which are compatible with the model, data, and noise bounds. This set of
parameters, which is usually a convex polytope in the parameter space, may become extremely
complicated to formulate and so it may be necessary to approximate the set.

In this paper, the discussions will be concentrated on the ellipsoidal outer bounding approach
which approximates the exact membership set at each instant by an ellipsoid in the parameter
space. The algorithms in this class [2,5~7] are temporally recursive and yield ellipsoids which are
optimal, in a sense to be defined later. The computational complexity of the Optimal Bounding
Ellipsoid (GBE) algorithms is much lower than that of the exact polytope bounding algorithms
[8] and non-recursive linear programming based algorithms [9]. The ellipsoidal formulation also
helps to make the analysis tractable. Furthermore, a discerning update strategy, which proves to
be appealing for recursive algorithms, evolves quite naturally in the optimization of the

0378-4754/90/303.50 © 1990 - Elsevier Science Publishers B.V. (North-Holland)
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516 A.K. Rao. Y.-F. Huuag / OBE parameter estimation

ellipsoids. A disadvantage of the OBE algorithms is the possible looseness of the ellipsoidal outer

bounds. .
The objective of this paper is to provide an overview of some recent developments and

applications of the'OBE algorithms. It begins by providing a brief review of the various OBE
algorithms. The. superiority of the algorithms vis a vis commonly used algorithms like the
Recursive Least-Squares (RLS) algorithm in situations where the -noise does not satisfy the
conventional stationarity and whiteness assumptions will be demonstrated by means of an
example: In Section 3, an approximate lattice implementation of one of the OBE algorithms will
be described [10]. An extension of the OBE algorithm to the estimation of parameters of ARMA
models will be presented in Section 4. A simulation example will be presented -to compare the
transient performance of the extended algorithm to that of the well-known Extended Least-

Squares (ELS) algorithm.

2. The OBE, algorithms

The OBE algorithms estimate the coefficients of autoregressive with exogeneous input (ARX)
processes described by [11]

(2} =ayp(t= 1)+~ +a,y(t —n) + bou(t)
+bu(t—1) + - -+ +bu(t—m) +v(z), (1)

where 7 is the integer sample number and y(z), u(¢) and v(¢) denote the output, input and the
noise-term, respectively. This-equation can be recast as

y(8)=0*Tp(e) +0(2), (2)
where

8* =a, as,..., a5, bys brseenr ]’
is'the vector of true parameters, and

o(2)=[y(t=1), y(t=2),..., y(t—=n), u(t), u(t- l),...,u(t—m)]T

is the regressor vector. It is assumed that the noise is uniformly bounded in magnitude, i.e., there
exists a known y, > 0, such that for all ¢,

v (1) < ¥5- (3)
Combining (2) and (3) yields
2,
(y(1) =0*7(1)) <15 (4)
Let S, be a subset of the Euclidean space R"*™*!, defined by
S,={0: (y(1) = 0%(1)) < %, & R™™*1). (3)

The OBE algorithms start off with a large ellipsoid, E,, in R"*™*! which contains all admissible
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values of the model parameter vector 8*. After the first observation ) (1) is acquired. .an ellipsoid-
is found which bounds the intersection of E, and the convex polytope S,. To hasten conver-
gence. this ellipsoid must be optimized in some sense. say minimum volume. minimum trace
[2,7}; or by any other cniterion {6]. Denoting the optimal ellipsoid by E,. one can proceed exactly
as before with future observations and obtain a sequence of optimal bounding ellipsoids { E,}.
The cénter of the ellipsoid £, can be taken as the parameter estimate at the rth instant and is
denoted by 6(¢). If at a particular time instant :. the resulting optimal bounding ellipsoid would
be of a “smaller size”,-thereby implying that the data point y(i) contains some fresh “informa-
tion” regarding the parameter estimates, then the parameter estimates are updated. Otherwise E,
is set equal to E,_,, and the estimates are not updated. In essence, the recursive estimator
consists of two modules. an information evaluator followed by an updating processor. At each
data point, the received data proceed to the updating processor only if the information evaluator
indicates that some fresh information is contained in the data. For details of the minimum
volume OBE algorithm, one may refer to, e.g., [2,7,12].

The subsequent discussions will be focused on a particular OBE algorithm [6]. The optimiza-
tion criterion for the OBE algorithm of [6] is defined in terms of a certain.upper bound on the
estimation error. Such a criterion yields several advantages over not.only the minimum volume
and minimum trace OBE algorithms, but also other membership set algorithms mentioned in
[12]. The updating criterion is simpler, and the presence of an information dependent
updating /forgetting factor enables the algorithm to track slow time variations in the parameters.
Analysis of the algorithm shows that if the input is sufficiently rich, as defined in [6], and the
noise is uncorrelated with the inputs then the prediction error is asymptotically bounded by the
noise bound and the parameter estimation error is bounded by a quantity proportional to the
noise bound. In addition, asymptotic cessation of updating is guaranteed in the-fixed parameter
case. These properties ate ot apparent in the other membership set algorithms.

For the OBE algori.hm of [6], the bounding ellipsoid at the ¢th instant is formulated as

= (0eR™m1: (0= 0(0)P7(1)(0 - 0(1)) < 0(1) (

for some positive definite matrix P(¢) and a non-negative scalar o2(). The size of the bounding
ellipsoid is related to the scalar o%(¢) and the eigenvalues of P(t). The update equations for
6(t), P(t) and o*(¢), derived in [6), are as follows:

6(t)=0(t—1)+K(1)8(2), (7a)
8(t)=y(1) - 07( 1—1)¢(t). (7b)
AP(1—1)¢(1)
KO =1 +>\G(t)’ (7c)
G(1)=¢"(1) P(1=1)9(1). (7d)
(:)———-—[1 K(n)e' ()] P(r=1), (7e)

2 2 2 M(1-A)8(1)
o°(t)=(1+A)o (1 =1)+ Ay = TN+ 2 G()

The optimal ellipsoid E, which bounds the intersection of E,_, and S, is defined in terms of
an optimal value of the updating gain factor A,. where 0 < A, < a < 1. with a being a user chosen

(7)
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upper bound on the updating gain factor. The optimum value of A, is determined by minimiza-
tion of ¢*(r) with respect to A, at every time instant. The minimization procedure results in a
discerning update procedure. In particular, A, is set equal to zero (no update) if

o2 (r—1)+8%(1) <% (8)
‘On the other hand, if (8) is not satisfied, then the optimal values of A, is computed as follows:

>\t = mln(aa V)v

with
« if 82(¢) =0,
1[1=B(r)]/2 if G(¢) =1,
v={ 1 | G(2) i . _ O)
! {1\+3(;)(G(:,)—1)} it 1+ B(1)(G(r) ~1) >0,
« if1+B8(1)(G(1)-1)<0
and
Be) = (8 - o*(1~1))/8%(1). ' (10)
The recursions (7), and the selective update strategy, along with the initial values
P~1(0)=1, 6(0)=0 and 0%(0)=1/A withd <1 (11)

form the OBE estimaticn algorithm, The value chosen for the upper bound y, need not be a tight
bound on the noise magnitude since the parameter estimates are not affected by an overestima-
tion of the noise bound (13, p. 52]. Overestimation of the noise bound however, will cause the
bounding ellipsoids to be larger. Underestimating the noise bound may cause o2(¢) to become
negative at some instant, thereby causing the bounding ellipsoid to vanish. In this case, a
recovery procedure may be activated to either increase the size of the ellipsoid E,._, or increase
the width of S, by increasing ;.

A striking feature of the OBE algorithms is their similarity to the Recursive Weighted Least
Squares (RWLS) with forgetting factor algorithm. In fact the OBE algorithm of [6] can be
considered a special case of the RWLS with forgetting factor algorithm with a weighting factor
A, and a forgetting factor 1 — A,. However, the intelligent selection of the weighting factor A,
makes the actual behavior of the OBE algorithms quite different from that of the RWLS.

The RLS algorithms have become increasingly popular in the fields of adaptive signal
processing and adaptive control. It is therefore worthwhile to investigate situations in which the
use of the OBE algorithms would be preferred to the RLS algorithms. For example, those cases
in which the statistical nature of the noise is unknown or in which the noise does not satisfy the
usual stationarity and whiteness assumptions seem particularly appropriate for the OBE al-
gorithms. Milanese and Belforte [9] have demonstrated the superiority of the Minimum Uncer-
tainty Interval Correct Estimator (MUICE) over the least-squares estimate for a third-order
moving average model where the noise is proportional to the magnitude of the output. A
comparison between the OMNE algorithm and least-squares for a non-linear biological model
has becn presented in [14]. However the OMNE and MUICE are non-recursive and more
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A.K. Rao, Y.-F. Huang / OBE parameter estimation 519

computationally intensive than least-squares-algorithms and it is perhaps fairer to compare the
RLS algorithms with the OBE algorithms which have similar computational complexity. For the
sake of illustration, we present an example below, in which the noise is quasi-stationary (4], and
compare the performance of the OBE algorithm of [6] to the standard unweighted RLS
algorithm,

Example- 1. The following ARX (2.2) model is considered
y(t)=-04 y(t—1)—0.85 y(t—2) =02 u(t) = 0.7 u(z—1) +0(s),

where the measureable input u(¢) is white and uniformly distributed in [—1, 1] and o(¢) is a
sinusoid in white noise w(r). Such a situation could arise when the observations are affected by
power supply hum or other electromagnetic interference. The following model for v(t) is
assumed:

v(t) =(1-B)w(t) + Bsin(mt/10).

The white noise sequence w(?) is also uniformly distributed in {1, 1] and is uncorrelated with
the input sequence. The value of 8 is varied from 0 to 1 and for each value of 8, ten Monte Carlo
runs of the OBE and RLS algorithms are performed with data records of 500 points each. The
value of the upper bound on the updating gain factor is a = 0.5 and the upper bound on the
noise is y, = 1.0, The. final parameter estimation error (8* — 8(500))7(8* — 6(500)) is averaged
over the ten runs and is displayed in Fig ! for B ranging from zero to one. Notice that the
parameter estimates of the RLS algorithm are unacceptable for larger values of 8. In contrast,
the performance of the OBE algorithm is relatively constant over the range of B. The perfor-
mance of the OBF ‘gorithm ‘has also been observed to be superior to the RLS algorithm for
other cases in whicn .he noise is impulsive and bursty [13).

In-conclusion, it can be noted that the similarity of the OBE algorithms to the RLS algorithms
facilitates the analysis of the algorithms and eases the development of numerically sup2rior and
faster implementations of the OBE algorithms. Analysis of finite precision effects in the OBE
algorithm of (6] has been performed in [13,15] and upper bounds on the parameter estimation
error due to finite word-length computations have been derived. It has also been shown that the
time recursion for the matrix P(¢) in the OBE algorithm of [6] is less susceptible to round-off

0
—o— OBE
o -— RLS
°
pugili]
e
i}
]
2
g .20.-
Q"i t\‘\.._,ol
<30 ] [

PO | i ] N L] i
0.0 0.2 04 0.6 0.8 1.0 1.2
Magnitude of Sinusoid

Fig. 1. Mean-squared parameter estimation errors of the OBE and RLS algorithms in white noise mixed with
sinusoidal noise (Example 1).
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errors than the corresponding recursion in the RLS algorithm. As in the RLS case, Bierman’s
UDUT factorization can be performed straighitforwardly, to update the P matrix in the OBE
algorithm, in a numerically stable fashion. Systolic array implementations of the algorithm have
been reported in [16,17]. Thus there exists the potential to apply well established techniques from
the adaptive filtering and system identification literature to bounding ellipsoid algorithms.

3. Lattice implementation

Lattice-filter implementations [18] of adaptive algorithms have become popular for a number
of reasons. Among others, the more prominent ones are: (1) the modular structure of lattice
filters which renders them particularly suitable for VLSI implementations; (2) the low sensitivity
of the filter to numerical perturbations in the lattice coefficienss; and (3) the fact that the lattice
coefficients are independent of the filter order, thus making it-possible to add successive lattice
stages or subtract existing ones without recalculating the already existing coefficients. In this
section, an outline of the lattice-filter formulation of the OBE algorithm of {6] is presented. This
lattice-filter implementation appears to retain all the above mentioned advantages, Details of the
implementation and simulation results have been presented in {10] and [19).

Consider the following well-known RLS lattice recursions [18) for an AR model

en(t)=en1(t) =Ko _(t=1)r,_(t=1) form=1,2,..., N, (12)
ra(t) =r,_(1=1) =kl _\(t—1)e,-,(t) form=1,2,...,N, (13)
where, eo(1) = ry(¢) = y(1), e,,(t) is the forward prediction error of order m, r,(t) is the
backward prediction error of order m and k®, and k!, are, respectively, the mth backward and
forward partial correlation (PARCOR) coefficients. Iterating (12) up to order m = N yields
en{(t) =p(1) =k3(t=Vrg(t = 1) = k(e = D)n(r = 1)
= o= ky (= Dy (e 1). (14)
Thus the Nth order predictor of y(t) is
y(t/N)Y =k (1= Dr(t=1) + k2t =)t =)+ - +k3_ (¢ = Dry_, (e = 1).
(15)

Compare (15) to the equation for a transversal predictor given by
y(t/N)=a(1-1)p(t=1) +a,(t=1)p(t=2) + - -+ +ay(t=1)»(1 = N)

and let ¥, =(0,..., y(0), y(1),..., y(¢)) and R, ,=(0,...,1,(0), 1,(1),.... 1,,(2)), the optimal
predictor for the RLS transversal case can be thought of in geometrical terms as the projection of
Y, onto the regressor space spanned by Y,_;, Y;_5,....Y,_y. The backward error vectors
Roi-1s Rygwtr+ros Ry—1,-1 span exactly the same space with the difference that they are
mutually orthogonal, and the optimal predictor for the RLS lattice case is again the projection of
Y, onto the above regressor space. Thus the predictors for the RLS lattice and transversal case
are identical.

In general, the OBE estimates at every time step are not identical to the RLS estimates.
Nevertheless, the approximate minimum mean square residual property of the ellipsoidal center
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[20] justifies the imposition of the lattice structure (12) and (13) on the forward and backward
errors of different orders for the OBE algorithm. Therefore. in principle, the OBE algorithm can
be used to calculate the transversal filter coefficients and then a step down procedure described
in [18, Section 4.2] can be used to calculate the optimal PARCOR coefficients. However; this
method will involve an excessive amount of computation. Furthermore, many of the advanta-
geous features of the lattice structure mentioned earlier will be lost since the transversal filter
coefficients are being used to obtain the lattice coefficients. It is thus preferable to apply the
OBE in such a way'that, at every time step, the estimate of the PARCOR coefficients is obtained
directly. This problem can be tackled by working in the space of PARCOR coefficients instead
of the space of the transversal filter coefficients. More specifically, define the ellipsoid-

Eq={0"6"P7'0<1/4)
and the convex. polytope
s ={0 (1) =88 (1)) < 5).
where
8 = (K, k... l\v-l) v (1) =(n(r-1), "1(’“1)»---".\/-1(’“‘1))T,
Py=1 and a<1.

If the true PARCOR coefficients are defined to be the ones obtained by applying the step down
procedure to the true AR parameters of the system, and if the true PARCOR coefficients have
been used to recursively obtain ¢'(¢) from (12) and (13), then each one of the convex polytopes
S, 1=1, 2‘... T, will contain the true backward PARCOR coefficient vector 8°*. This is
because 8*'3'(r) = 8*76(r). The OBE algorithm can now be applied with the parameter vector
6 set equal to the PARCOR coefficient vector 8’ and the regressor vector é(r) set equal to the
vector of background errors ¢'(z) thus yielding the time update for the backward PARCOR
coefficients. However, it is clear from (13) that. in order to obtain the backward errors of
different orders at time ¢, the forward PARCOR coefficients at time ¢ — 1 are required. The time
update equations for the forward coefficients can be obtained as follows.
Iterating (13) yields

re(t)=ylt=N)=ki(t = N)es(1-N+1)
—ki(t=N+VDelt =N +2) - =kl (1= ey (1).

Since the backward errors are expected to be bounded. one can therefore define a convex
polytope in the space of the forward PARCOR coefficients as

S"([)={0":(_)'(1"1V) 0”T¢H( )) <5 2}‘
where
0”7 = (kb ki kS )T and o”(r)=(eglt=N+1), eyt = N+2),...ev i (1))

o7 15 set higher than v§ to ensure that S”(¢) contains the true forward PARCOR coefficient
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vector. It is worth noting that the exact value of -/(;2 is not critical here as, according to our
experience, the algorithm is relatively insensitive to the values of such bounds. The algorithm
formulated by (7) with 6 = 6" and ¢ = ¢" can now be applied to obtain.the time updates of the
forward PARCOR: coefficients. An important point to be noted here is that for the backward
error recursions at time ¢, the estimates k(s — 1), k(¢ —1),.... k§_,(¢z — 1) are required. How-
ever, the OBE time update at time ¢ — 1 has made available the coefficients k{(¢ - N), k{(¢t =N
+1),..., kjy—y(¢ = 1). The former set of coefficients thus has to be approximated by the latter
set, This is a valid approximation for small N (as verified by simulation) because then k,,(t — 1)
is approximately equal to k(1 — N + m),

For the stationary case, since the backward and forward coefficients are expected to be equal,
the OBE needs to be applied only once to the forward error (i.e.. to the backward coefficients).
The algorithm complexity is thus the same as that of the direct implementation, In general, the
computational complexity of the lattice implementation is twice that of the direct form because
the OBE ?lgorithm is applied two times at every iteration. However, the order of computation is
still O(N4).

4. Extension to ARMA models
Autoregressive moving average (ARMA) models are described by difference equations of the
form
y)=ay(t=1)+ - +a,p(t~n)+w(t) +ew(r=1)+ - +cw(t—r) (16)

where y(¢) is the output and w(¢) is an unobservable white noise sequence. This equation can be
recast as

y(2) =6*T¢' (1) + w(t), (17)
where

8* = [ay, @av..es dyy Cpeenn ]’ (18)
is the vector of true parameters, and

(1) =[y(t=1), p(t=2)..., p(t=n), w(t=1)...cow(t=r)]"

is the true regressor vector. It is assumed that the noise is uniformly bounded in magnitude. i.e.,
there exists y, > 0, such that

w3(t) <v¢ forail s, (19)

Since the values of w(z) are unknown, the OBE algorithm, in its present form. cannot be used to
estimate the parameters. However, if estimates of w(t) are used in place of the actual values, as
in the ELS algorithm, then the algorithm (7) can be used to construct a sequence of optimal
bounding ellipsoids. A natural estimate of w(z) is the a posteriori prediction error (also termed
residual by some authors)

e(r) =y(1) = 87(1) o (1). (20)
where now
o) =1y(t=1), y(t=2).....p(t=n), (e =1)..... e(r—r)]". (21)
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The extended optimal bounding ellipsoid algorithm (EOBE) [13.21] thus consists of (7) and' the
same selective update strategy, with the true parameter vector and the regressor vector as defined
in (18).and (21) respectively. The initial conditions (11) are modified to

PY0)=M-I. 6(0)=0 and o%(0)<y®,  with M>1, (22)

This choice of initial conditions still ensures that the initial ellipsoid E, will contain 6* and
makes the algorithm amenable to analysxs It also simplifies the formula for deterxmmng the
updating gain factor. In particular, A, is always less than unity, hence there is no need- to -
mtroduce an -upper bound for the updatmg gain factor. Also note that y* in (22) is different
from v¢ in (19).

Analysis of the EOBE algorithm, It is easy to see that, since estimates of w(¢) are used in the
regressor vector, there is no guarantee that all the convex polytopes S,, 1 =1, 2,,.., will contain
6*. However, it has been shown [21] that all the convex polytopes will contain 8* if (i) E,
contains 8*, (ii) the true moving average coefficients satisfy a certain upper bound (analogous to
the Strictly Positive Real (SPR) condition in the ELS-algorithm), and (iii) the threshold y* is
chosen appropriately {21]. The conditions are of course only sufficient conditions, and the
algorithm has been observed to perform well in several examples where the conditions (ii) and
(ii1) were violated.

Using this result, the following bounds on the prediction error and parameter estimation error
can be obtained (see [13,21] for details).

(a)

lim €*(r;) exists,
l -0

where {7} is the subsequence of updating instants of the EOBE algorithm.
(b) Uniformly bounded a posteriori prediction errors:

e(t) <v?, for all time instants 1.

Furthermore, if a certain persistence of excitation condition holds, then for any finite &,
(©
lim ||6(¢) —8(r k)| =0.
(—x

(e) Asymptotically bounded a priori prediction errors:
82(1) = [0, v¥].
(f) Asymptotically bounded parameter estimation ergor-.
16() = 0% 1= [0.253(1 + T1e,1) /-
where v¢ is as in (19) and a, is a positive constant.
The above results do not require the svstem (16) to be stable or the noise sequence w(z) to be

white. However our simulation experience has shown that the parameter estimates are usually
not close to the true parameters if the noise is colored, but such is also the case for the ELS
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Fig. 2; Mcan.squared parameter estimation errors of the EOBE and ELS algorithms (Example 2),

algorithm, The EOBE algorithm performs well when the noise sequence w(t) is white, In
particular, the transient performance of the algorithm for stable and unstable ARMA type
systems with w(¢) white appears to be superior to that of the ELS algorithm. This observation is
illustrated by the following, '

Example 2. The following ARMA (3,3) model is considered
(1) ==06 p(t~1)+0.2 y(r—-2) +0.4 y(r—3) +w(t)
=022 w(r—-1) +0.17 w(t—2) - 0.1 w(r - 3).
The white noise sequence w(?) is uniformly distributed in [~ 1, 1}. Ten Monte Carlo runs of the
OBE and ELS algorithms are performzd with data records of 50 points each. The threshold
y? = 25. The parameter estimation error at each instant, (8* — 8(¢))"(6* — 8(1)) and the a priori

prediction error are averaged cver the ten runs and dispiayed in Fig. 2 and Fig. 3 respectively.
The paramieter estimates of the ELS algorithm tend to wander outside the stability region in the
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Fig. 3. Mean-squared prediction errors of the EOBE and ELS algorithms (Example 2).
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transient stage, thus causmg unacceptably high prediction error bursts. The inherent stability
mechanism of the ELS algorithm, however, ensures:that the.estimates do return to the stability

‘region. The transient estimation error of the EOBE algorithm, in contrast, is well behaved. This

seems to provide a good incentive for employing EOBE. rather than ELS, when few data are-
available,

5. Conclusion -

It has been shown that, on_account of their low computational complexity and analytical
tractability, tke. OBE algorithms can serve as alternatives to -standard adaptive filtering al-
gorithms in situations where the noise is unknown but bounded. As in the least-squares case, the
OBE .algorithm can be implemented in a lattice form and can-thus acquire all the advantages of
the lattice structure, The extension to the colored noise case is performed as in extended least
squares, and-sufficient conditions for “convergence™ of the algorithm have been outlined. The
wransient performance of the algorithm, in terms of parameter estimation error and prediction
error, has been observed to be superior to that of the ELS algorithm.
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Abstract
Analysis of error propagation in an OBE algorithm is performed which shows that the
errors in the estimates due :o an initial perturbation are bounded. Simulation results
demonstrate that the OBE algorithm can perform betier than the conventional RLS in small
word-length environments. The analysis presented in the paper could also.be applied for the
finite precision analysis of recursive weighted least-squares algorithms.
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I INTRODUCTION

‘Set Membership Parameter Estimauon (SMPE) algorithms {1-3] are a class of estimation
algorithms which vield a set of feasible parameter vectors consistent with the observations,
model structure and noise constraints. This is in contrast to least-squares type or stochastic-
gradient-based algorithms which compute point estimates of model parameters.

The SMPE- algorithms do not assume any knowledge of the distribution or any other
statistical properties of the noise process. However it is assumed that the noise is bounded,
either in magnitude or energy. The performance of SMPE algorithms is often superier to the
least-squares algorithms for casss when the noise process does not satisfy the usual white and
stationary assumptions [4] and when the sample size is small {5}, Furthermore, these
algorithms yield 100% confidence regions for the parameters even for small sample sizes, in
the case of batch algorithms, and at every time instant with recursive algorithms.

The behavior of least-squares and stochastic-gradient-based adaptive filtering algorithms in
limited precision environments has attracted a lot of attention [6), [7). However, in the case of
SMPE algorithms, the issue of finite word-length effects has been largely ignored till recently.
In (8], the potential numerical problems which can arise with the exact cone updating (ECU)
algorithm are discussed and a robust modification is suggested. In this paper, finite precision
effects on one of the Optimal Bounding Ellipsoid (OBE) algorithms are studied through
analysis and simulations. The OBE algorithms obtain recursively, ellipsoidal outer bounds of
the membership set of parameters of ARX models with bounded noise. The algorithms have
the distinctive feawre of a discerning update strategy.

A brief description of the OBE algorithm of [9] is given in Section II. A first order analysis
of the error propagation in the OBE algorithm is then performed which shows that the error in
the estimates at any time instant due to an initial perturbation is bounded. The finite precision
effects are also analyzed from an alternate geomertric point of view. Results of a fixed point
type simulation of the algorithm are presented which show that the OBE algorithm yields
consistently good estimates over a large range of word-lengths. In fact, the performance is

superior to that of the RLS algorithm for smalil word-lengths.
1
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II THE OBE ALGORITHM

The OBE algorithms {1],[9] estimate the coefficients of ARX processes described by

v(t) =0 T d(t) + v(1) (2.1
where

(1) = [y(t-1),....y(t-0), u®), ult-1), ... ut-m)) T (2.2)
is the regressor vector consisting of past outputs {y(t)} and present and past inputs {u(t'}, and
6%is the true parameter vector, specifically 6% = [y yi.s 2y, Dgyers D] T [1,9]. The noise

sequence {v(t)} is assumed to be uniformly bounded with a known bound Y2 0, i.e.,
v <yl forallt (2.3)

The OBE algorithms obtain, recursively, a “decreasing” sequence {E,} of optimal outer
bounding ellipsoids in the n+m+1 dimensional parameter space. The ellipsoid E, can be
expressed as

Ey= (6 € Rnmtl; [6-6(1) T P-1(t) [0 - O(1)] < 02() ) (2.4)
where P-1(t) is a positive definite matrix and 6(t) is the center of the ellipsoid which can be
taken to be a point estimate of the parameter vector. The factor 62(t) is a positive time-varying
scalar which along with P(t) determines the size of E,. Time recursions for P(t), 6(t) and o2(t)

are given below, see [9] for a derivation of these equations.

_ 1 AP(t-D)O(DT()P(t-1)
PO = plPeD- Th + 7\1¢T(t)P(t-l)<DT(t)]T 2 (2.5)
0 = (-4 b doy2- HGEAIRCTEE @9
8y = 8(t-1) + A, PO [y()-DT(1)6(t-1)] 2.7)

The initial conditions are chosen to ensure that 6* € Eg. A possible choice which improves the

robustness of the algorithm to finite word-length effects is
P(0) =M1, and 02(0) =42 where M >> 1. (2.8)

The optimal ellipsoid E, is defined in terms of an optimal value of the updating factor A, & [0,ct)

where o <1, is a user chosen upper bound on the updating factor. For the OBE algorithm of
[9], the optimum value A, is determined by minimization of ¢2(t) with respect to A, at every

time instant. The minimization procedure results in a discerning update procedure. In

particular,
if o2(t-1) +32(1) < y2 A, =0 (no update) (2.9)
else A, = min (o, B(1) ), with (2.10)

2
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()= (2.11)
(& GO P _
LGO™ " 14Bm) (Gm -1) GEH=1
where
3(t) = v(t)—- 8T (t-1)D(t) (2.12)
G(1t) = T()P(t-1)D(D) (2.13)
and
B = (42 - o2(t-1) )/ §2(r) (2.14)

The above recursive relations (2.5)-(2.7), and the updating factor formula (2.9)-(2.14) form

the OBE estimation algorithm.

III'  ERROR PROPAGATION

The error propagation properties of the OBE algorithm are analyzed here by focusing on the
propagation of a single error in 6(t) and P(t) to future instants. Assume that at time instant ty
there is a perturbation in the estimates due to round-off error, yielding 0'(ty) = 06(ty) + AB(ty)
and P'(tg) =P(ty)+AP(ty), where.the primed quantities are the perturbed ones. We investigate
in this section the effect of these errors on the estimates 6'(t) and P'(t) at t > tg, assuming that
the computations are performed with infinite precision. Similar studies have been performed
by Ljung and Ljung [10] in their investigation of the error propagation properties of RLS
algorithms. Though the update equations of the OBE algorithm are similar tq those of the RLS
algorithm, the presence of the updating factor as a discontinuous function of the estimates
complicates the analysis. Employing a first order perturbation analysis, an upper bound on the
error in the estimates due to finite precision computations can be obtained as described below.
Theorem 1. If the following assumptions hold:
(1) The matrix P(t) is well conditioned, i.e. there exist positive 11; and 1, such that

0< My SAmin(P®)] and Apax [P(]< M, forallt20 3.1

where Aninl.] and Apax[.] refer to minimum and maximum eigenvalues respectively.
(i) The ARX process is stable and has bounded inputs, thereby implying the existence of a

positive K such that
dT(dD() < x forallt=0 (3.2)

3
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(iii) The-unperturbed algonthm vieids bounded pregiction errors, i.e.. there exists an h >0, s.t.
18(1)i<h forailt=0 (3.3)

(iv) There exists an integer M such-that if the unpérturbed algorithm has M updates in an
interval of time, then the perturbed version updates at least once in that interval,

(v) At the updating instants of the perturbed algorithm, a lower bound p is set for the updating

factor A, where p i$ a suitably small positive number.

Then the error between the perturbed and unperturbed quantities at the updating instants

{ty} of the perturbed algorithm is bounded as

R , -(1-p}k/M!
AP I < (Da)“(1-p)M " 1APO)I +M3 (k+1) max A M ———— (3.4)
P ﬁl Isugk v p
e (1 kML 12 M Lk/m]
IABE )< (1-p)™ " AB(t) I+, hk!2 max IAX [ —[1-(1-p)" ]+
1sjsk 7§ p (3.5)

hl/2 T]—2 max |AP(t)ll
N, 1sjsk

where 1; and 1, are as in (3.1); |_x_| is used to denote the largest integer less than x and IL.Il is
used for both the euclidean vector norm and the compatible matrix norm.

Proof: See [11].

Remarks

(1) The first term in (3.4) and (3.5) reveals an exponentially decaying effect of the initial
perturbation. The second term depends on the error introduced by the initial perturbation in the
calculation of the updating factor. The additional error term in (3.5) is due to the errors in P(?).
(2) Assumptions (i) and (iii) have been shown to hold in [9] if the system input u(t) and the
noise v(t) satisfy certain persistence of excitation type of conditions.

(3) Assumption (v) is a technical device required to ensure that the homogeneous parts of (3.4)
and (3.5) are exponentially stable. If p < 0.001, then in practice the values of A, at the
updating instants will usually be larger than p.

(4) Note that the analysis of error propagation has ignored the effect of round-off errors in

¢ »nputations. However, since 'ie homogeneous parts of (3.4) and (3.5) are exponentially
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stable, the errors.at any ume instant due to round-otf errors created at prévious time instants
 would be bounded [10].
v EFFECTS. ON THE BOUNDING ELLIPSOID
In this section, the effect of round-off errors (in one iteration) on the resulting bounding
eilipgoid is studied. More specifically, we ask the following question: If 6* € E,.;, can errors
in the computation of E, (i.e., computation of 6(t), P(t) and 62(t)) cause 8* ¢ E,

Define 8(t) = 8(t)-0*. Then from (2.7)

B(t) =8(t-1) + LPODE)S(R) + Ay 4.1)
where A is the round-off error. Similarly from (2.5a)
P-1(t) = (1-Ay) P-1(t-1) + A, D(ODT(L) + Ay 4.2)
and-from.(2.6)-
A (1-Ap) 82(1)
2(3) = (]— 2(t. 2 _ t !
o(i) = (1-A) o4(t-1)+ A Y Toher A STOP- DT + A3 4.3)
Define
Ap= B(t-1)+ A, POD)S(1) (4.4)
and “
By = (1-Ap P-1(t-1) + A, D()DT(t) 4.5)
Then, after neglecting second and higher order terms in A and Ay, it can be shown that
V(t) = A[T Bl At + A[TAzAt + A]T Bt A( + AtT Bt A] (4.6)
where
V(1) =B(t) P-1(t) B() 4.7

Expanding AT B, A, and using (4.3) yields

V(t)-02(t) = (1-A,) [V(t-1)-62(t-D)] + A, [v3(1)-y?]
+ ZA]T B( At + AtTAZA[ +A3 (4.8)

From the definition of E; it is clear that 0*c E;if and only if V(t) £ 6%(t). Thus if the errors
Ay, Ay, and Aj are large enough, it is possible that 8* ¢ E;. A sufficient condition for 6" € E,
is 12417 By Ay +ATAA +A31 S A [12 - vE(1)] (4.9)
If X, = 0 then since no update occurs 8° ¢ E, automatically. The condition (4.9) shows that if
the errors due to finite word-length computations are small enough then 6€ E, Furthermore,
by setting y2 higher than the actual bound on the noise, the robustness of the algorithm with
respect to finite precision effects can be increased at the expense of increasing the size of the

bounding ellipsoids.
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V SIMULATION STUDIES
A fixed point implementation ot .the OBE algorithm was simuiated by assigning a fixed
number of bits (ibit ) to represent the fractional part of the algorithmic variables. By varying
ibir a fairly accurate portrayal of the behavior of the algorithm in a real-world restricted word-

length environment can be obtained. A similar scheme has been used in [12] to characterize the

performance of the RLS algorithm. The noise sequence {v(t)} and the input sequence{u(t)}are

generated by a pseudo-random number generator with a uniform distribution in {-1.0,1.0).
The upper bound ¥2 is set equal to 1.0. A value of o = 0.1 was used since it yielded a

satisfactory convergence rate and inhibited overflows in the update equation for P(t). The

_parameter estimates are obtained by applying the OBE, RLS and EWLS (RLS with weighting

factor A =0.99) to 1000 point data sequences. For the OBE algorithm, the centers of the
optimal bounding ellipsoids are taken to be the estimates. Ten runs of the algorithms are
performed on the same model but with different noise sequences. The number of bits used for
the fractional part, ibir, is varied from 16 down to 6 bits and the average of the parameter error
18(1000)-6* 1l 2 is computed for each value of ibit.

Example 5.1 (Fig. 5.1)  An ARX(2,3) process
y(t) = 1.6y(t-1)-0.83 y(t-2)+0.14 u(t) +u(t-1) +0.16 u(t-2) +v(t)

The average tap error of the OBE algorithm appears constant as ibit varies from 16 to 8 bits.
The P matrix became negative definite for ibiz = 6. The RLS and EWLS algorithms do not
work well for ibit < 10. In fact P became indefinite for ibit < 14, in the EWLS case.
Example 5.2 (Fig. 5.2) An ARX(10,10) process

The OBE algorithm worked well for ibir 2 12. However for smaller values, P became
indefinite and overflows occurred. For the RLS case, P became indefinite for ibit < 16. In
order to study the performance of the OBE algorithm at smaller word-lengths, a UDU'
factorization of the P matrix was performed. The OBE update equations are identical to the
update equations of the weighted RLS algorithm with weight o = A, and forgetting factor A(t)
= (1-A;) and hence the UDU" form of the OBE can be easily developed [13, pg. 334]. The
UDU' form of the OBE algorithm is then compared to the UDU' form of the RLS algorithm.
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The simulation resuits show that for larger word-lengths. the performance of the RLS
algorithm is superior.. For smaller values of ibit, however, thé average parameter estimation
error is about the same for both the OBE and the RLS algorithms.
Discussions

Example 5.2 shows that the performances of the UDU' versions of OBE and RLS
algorithms are comparable at smaller word-lengths. The superior performance of the
straightforward- implementation of the OBE algorithm, as compared to the RLS or EWLS
algorithms at smaller word-lengths is therefore primarily due 1o the superior numericai
properties of the recursion for the matrix P(t). The update equation for the RLS algorithm with
a forgetting factor A is
[1- P(t- )OO (1) R

P(t) = -
A+ O OPE-DHY A (5.1)

The corresponding equation for the OBE algorithm can be rewritten as

P(t-1) XD (1) 1 2D

A 1-7\t (5.2)
_k_ + <b‘ OP-1)d(t)

t

Pw=[1-

Since 1- A, plays the same role in the OBE algorithm as does A in the RLS algorithm, the only
difference between (3.1) and (5.2) is that the factor (1- A, )/ A, appears in the denominator of
the term within braces in (5.2) as opposed to the corresponding term A in (5.1). The
degradation of performance occurs primarily because the term within braces becomes indefinite
on account of round-off errors. Since A, is usually much smaller than unity, the term which is
being subtracted from the identity matrix in (5.2) is much smaller than the one in (5.1). Thus
P(t) in the RLS algorithm has a greater tendency to become indefinite than the P(t) in the OBE
algorithm. This observation has been confirmed by examining the eigenvalues of P(t), for runs

in which the RLS algorithm performed poorly.




.

VI CONCLUSION

The analysis of error propagation in the OBE algorithm has shown that the algorithm is

stable-with respect to small computational errors. As in the RLS case, the robustness of the

algorithm is due to the presence of an-updating gain/forgetting factor. Stability of the algorithm

has also been viewed from an alternate geometric approach. The analysis shows that the

bounding ellipsoids are valid bounds for the membership sets as long as computational errors

are not too large and that the robustness of the algorithm can be increased by increasing the

value of the noise bound. Simulation results show that the OBE algorithm is indeed stable for

moderate word-lengths and that the mean parameter estimation error is relatively constant over

a wide range of word-lengths. In fact, it was observed that the performance of the OBE

algorithm is superior to that of the RLS algorithm for small word-lengths.
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TRACKING CHARACTERISTICS OF AN OBE PARAMETER
ESTIMATION ALGORITHM®

Ashok K. Rao! and Yih-Fang Huang*

Abstract

Recently there seems to have been a resurgence of interest in recursive parameter
bounding algorithms. These algorithms are applicable when the noise is bounded and the
bound is known to the user. One of the advantages of such algorithms is thar 100%
confidence regions (which are optimal in some sense) for the parameter estimates can be
obtained at every time instant, rather than asymptotically as in the least-squares type
algorithms. Another advantage is that these recursive algorithins have the inherent
capability-of implementing-discerning updates, particularly-that of allowing no updates of
parameter estimates in the recursion. This paper investigates tracking properties of one
such algorithm, referred to as the DHOBE algorithm. Conditions which ensure the
existence of these 100% confidence regions in the face of small model parameter variations
are derived. For larger parameter variations, it is shown that the existence of the 100%
confidence regions is guaranteed asymprotically. A modification is also proposed here to
enable the algorithm to track large variations in model paramerers. Simulation results show
that in general, the modified algorithm has tracking performance comparable, and in some
cases superior, to the exponentially weighted recursive least-squares algorithm.

" Thus work has been supported 1n part by the National Science Foundation under Grant MIP §7-11174, and
1n part by the Office of Naval Research under Contract N0OOO14-59-J-1788. Paper 1s to appear in the
IEEE Transactions on Signal Processing.
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[. INTRODUCTION

Performance analysis of adaptive tiltering algorithms 1s usually done by assuming that
the unknown system being modeled is time-invariant. ‘However, in practice. adaptive
filters-are often used in time varying environments. It is thus important to investigate the
performance of these aléorithms, allowing the system model parameters to vary with time,
A considerable amount of attention has been paid to this problem in the adaptive filtering
literature, with analysis of varying amounts of rigor being performed mainly for the LMS
and RLS algorithms, see, e.g., [1-3].

This paper investigates tracking properties of a recursive estimation algorithm, referred
to hereafter as the DHOBE (Dasgupta-Huang Optimal Bounding Ellipsoid) algorithm [6].
This algorithm belongs to a class of bounded-error estimation algorithms termed Se-
Membzrship Parameter Estimation (SMPE) algorithms [7],(8]. The membership set is a set
of parameter estimates which are compatible with the model of the underlying process, the
assumptions on noise, and the observation data. At the first glance the DHOBE algorithm
appears to be very similar to the recursive least-squares (RLS) algorithm. However, in
contrast to the RLS algorithm which obtains an optimal solution (in the sense of minimum
mean-square estimation error) to the underlying problem, the DHOBE algorithm is
developed by using a set-theoretic tframework, namely, the notion of optimal bounding
ellipsoids. This causes the algorithm to behave quite differently from the RLS algorithm in
many ways. [n addition, the algorithm incorporates a data dependent forgetting factor
which results in a discerning update strategy.

In case of time-varying systems, it is important to ensure that the time varying true
parameters {6*(t)} are contained in the bounding ellipsoids {E,} of the DHOBE algorithm.
In this paper, such conditions will be derived. It will also be shown that if a jump in the
true parameter vector 87(t) causes 1t to fall outside the bounding ellipsoid. then provided
that the jump is not too large the bounding ellipsoids will move towards 67(t) and

eventually enclose 6%(t) again. A rescue scheme is proposed which will guarantee the

1

41'




existence of bounding ellipsoids 1n the face or large parameter variations. Some techniques
for applying different parameter bounding aigorithms to time v arying systems have been
reported by Norton and Mo in [9]. One of the techniques suggested for the OBE type
algorithms is to use a fixed scaling factor to inflate the bounding ellipsoid with every new
data point. Another technique which can be used if prior knowledge of the parameter
increments is available is to vector sum the bounding ellipsoid with the set describing the
parameter variation [9]. If the extent of parameter variation is unknown, as is often the
case, the first technique will have to use a large scaling factor to cope with possibly large
.parameter variations and ¢onsequently the parameter bounds will be loose. In contrast, the
rescue procedure described in this paper can automatically detect and accurately compensate
for large bmameter juinps.

Simulation results are presented to show that the DHOBE algorithm is able to track
slow and abrupt variations in the parameters. The tracking performance, in terms of
parameter estimation error, is comparable to the RLS algorithm with a forgetting factor,
Abrupt changes in the parameter can in some cases be tracked better by the DHOBE

algorithm than by the RLS algorithm.

II. THE DHOBE ALGORITHM
One of the seminal works in the estimation of parameter bounds is that of Fogel and
Huang [10]. The algorithm of [10] recursively obtains ellipsoidal outer bounds to the
membership set. The model siructure consider:d is the following ARX model:
v(t) = 0°Td(1) + v(1) (2.hH

where
0" = [ay 9 ... a3 99 by - bylT

is the rue parameter vector and
®(1) = [v(t-D v(1-2) ... v(i-r) u(t) ue-D ..ouee-m)|T
ts the measurable regressor vector. The noise v(t) is assumed to be uniformly bounded in

magnitude with a known bound v. i.e..

9

42




v lsy (2.0
Assume that at ume nstant - 1. the exact membership set is outer bounded by the ellipsoid
Ey.j described by
Evi=(0¢e RN:[6-8(t-D|T P-l(t-1) [0 - 8(t-1)] € o3(t-1)) (2.3)

where N=n+m+1, P-1(t-1) is a positive definite matrix, and 6(t-1) is the center of the
ellipsoid. At time instant t, the observation y(t) vields a set S which is a degenerate
ellipsoid in the parameter space, namely

Si={0& RN:[yt)- 6Td®2 < v2) (24)
From (2.1) and (2.2) it is clear that S; contains the true parameter vector. An ellipsoid E;
which contains the intersection of E;.j and Sy is then given by [10]

Ei={0e RN:(1-A)[6-6(t-1) TP-1(t-1) [8 - §(t-1)]

+ A [y(1) = 6TD(0))2 } < (1-Ay) 02(t-1) + A 72} (2.5)
where A, is a positive time-varying updating gain, Note that (1-A,) can be regarded as a
forgetting factor. The formation of the bounding ellipsoid E; which contains the
intersection of an ellipsoid E,.; and the set S, is illustrated by means of a two-dimensional
example in Figure 1. By performing some algebraic manipulations on (2.5), an expression

for E, can be obtained as

E(={8e RN:[6-8()]T P1(1) [0 - 8(t)] < 62(1) } (2.6)
where
P-l(1) = (1= RYP1(t-1) + A, DO)DT(r) (2.7)
62(1) = (1-A) G2(-1)+ A 72 - K;f‘{ﬁ‘ﬁféﬁ?ﬁﬁf’ﬁ&ﬂ’)’z (2.8)
0(1) = 8(t-1) + A, P(DM[y()-PT(1)0(t-1)] (2.9)

Using the matrix inversion lemma in (2.7) vields

_ Lo AP DOOOTPE-1) ;
P(y = l—)\tlp([ D l—;\,[ + k[q)T([)P(t-l)(D(t) ] (210

Equations (2.6) - (2.9) characterize the update of the bounding ellipsoids. The center
8(t) of the bounding ellipsoid E, can be taken to be a point estimate of the parameter vector.

Note that different values of A yield different bounding ellipsoids (10]. To ensure

LF'y)
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convergence, A, need be chosen to optimize in some sense the pounding eilipsoids and.
clearly, different optimizauon criteria would lead to different OBE aigorithms.

In the DHOBE algorithm, the updating gain A, is chosen tc minimize 62(t) at every
instant . This has the etfect of usually decreasing the size of the ellipsoid trom iteration to
iteration, though there is no guarantee that the size will be minimé:.ed. This choice of A has
vielded good results experimentally and in addition has simplified the convergence and
tracking analysis of the algorithm. The minimization procedure yields the following
updating criterion [6]

If o2(t-1) +82(t) <y2 then A, =0 (i.e., no update) (2.11)
where d(t) is the a priori prediction error, namely,
8(1) = y(t) - dT(1)6(t-1) (2.12)

Otherwise if 62(t-1) +82(t) > ¥2, then the optimum value of A, is non-zero and can be

calculated according 10
A, = min(aL,Vvy)
where
o if 32 =0 (2.13.a)
i ifG() = 1 (2.13.b)
V= | G
=G0 fl- \/W | if 1+BM[G()-11>0 (2.13.¢)
o if 14+B()[G(1)-1] <0 (2.13.d)

and o is a user chosen upper bound on A, satisfving

O<ax<l (2.14)
and
G(1) = DTHP@-1)D() (2.15)
and
_P=c%(t-1)
B = 50 (2.16)

The initial conditions are chosen to ensure that 8* € E. A possible choice is

P(0) = 1.6(1) = 0 and 02(0) = 1/e?> where € << 1.
The above equations. (2.8-2.16) define the recursions of the DHOBE algorithm. In [6],
>ome convergence type properties such as convergence of the parameter estimates to a ball

and boundedness ot the prediction error have been shown for time-inv ariant systems. In
4
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[L1} and- [12], an extenston. of this algorithm was deveioped for ARMA parameter

estimation and ‘similar convergence properties have been shown o hoid.

[II. ANALYSIS OF TRACKING CHARACTERISTICS
As mentioned earlier; tracking in the context of OBE algorithms for parameter
estimation will mean ensuring that the time varying true parameter vector is contained in the
bounding ellipsoid. The theorems below present conditions under which parameter
tracking can be accomplished.
Theorem 1, A sufficient condition for 6%(t) € E, is
(0% (1)=0(t-1) P (t-1)(8* (1)~ B(t- 1)) £ 5°(t- 1) (3.)
Proof: If 6%(t) e Ey.| then since 0*(t)-e Syand E{2E.1NSy, it follows that 8*(t) € E,.

And from (2.3), 0¥(t) € E.1 is equivalent to (3.1).

“Theorem 2, At any time instant t, the true parameter 6*(t) € E, if and only if

(0% (t)—0(t- 1)) P (t-1)(O* (1)~ O(t- D) S G*(t- ) + i%‘i—(y" -vi() (3.2)

where v(t) is the noise term in (2.1).

Proof: Subtracting 6%(t) from both sides of (2.9) yields
B(1)-0*(t) = B(t-D=0*(1)+A,P()D(1)d(1) (3.3)

Define the following quadratic function in 8*(t)
V()= [8(1)-6* ()] P (1)[6(1) - 6*(1)]
Using (2.7) and (3.3) it is straightforward though tedious to show that

V) = (1-A)[0(t-1)=8*(O]"P*(t- D[O(t-1)- 8% (1)]
— )"2(1 - x':)82 ([) (3.4)

AV -t )+ AG(D)

Using (2.8) in (3.4) yields
V()=o) = (1=A)0(t-1)=8%®]P (t-DB(t- D -0* (1)

+A V() -y =(1=1)c(t-D (3.5)
Since 0%(t) € E, if and only if V(t) < 02(1), thus (3.2) is obtained. \AAY)
5

&+
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iris easy 10 see from Theoren: : 1hat:f the wrue parameter 9° 1+ is constant for ail ©. then
the bounding eilipsoids obtained oy :he DHOBE .:igorithm encioses 871y at ail iime
instants. This-is a property that ail weitl devised set-membership estimation aigorithms
should have when applied to esumartion of iime-invariant parameters. If. on the other hand.
07 (1) is time-varying, and if at some time instant t, 67(t) is found to be out of the bounding
ellipsoid E;. it must not have been included in Ei.;. Theorem 2 then demarcates the region
in which 6™(t) can migrate without loss of tracking. This region is shown in Figure 2 fora
two-dimensional case. This theorem also shows that by choosing 72 to be larger than the
actual bound, say, Y2 on v3(1), it is possible to increase the tracking capability of the

algorithm. The next theorem gives an upper bound on the maximum variation in the

‘parameters for which tracking is guaranteed.

Theorem 3. If 6*%(t-1) € E,.|, and A  # 0, then 6%(t) € E;if

1 1 A, A [P'(-D)]
WP -1] T I=A A [P )

1

+03(t-1) 2 =fo?(t-1) ! (3.6)

Alt) = B%(t) - B%(1-1) (3.7)

A< v’ =y2 ()]

where

and Apqyn and Apax denote. respectively. minimum and maximum eigenvalues. and LI
denotes the usual Euclidean norm. The quantity ¥2 is the actual bound on v(t) and the
threshold - that is needed for evaluating the optimal updating gain via (2.11) and (2.16) is
chosen to be larger than v2.
Proof: [t is straightforward to show that
[B(t-1)=0* (O] P (t- D[B(t- D= 8% ()]
= V(t-D=a"(OP (- DA = 28T (P (- DB(t - 1) (3.8)
where V() has been defined previously and
0(t-1) = B(t-1) - 8%(t-1)

Substituting (3.8) into (3.5) and using the fact that v2(t) < ¥2 vield




Y

V() =6 S(- 2 {V(t- D=6 (1- D]+ 2 (77 =77

-

(1= 2 {AT(OP 1= DAY - 2T ()P (1- AT 1] (3.9
Since 0*(t-1) = E.{, therefore V(t-1). € 62(t-1) and us a sufficient condition for

6"‘(t) (S E[ is ’
AT (P (t- DA(1) = 2AT ()P (1 - )B(t- 1)

< (1P -v7) (3.10)
[-A

t

ie., 0% € Eyif

A [P (8- DIA@IE +2AOI 16(e- DIA_, [P (t-1)]< i—%—(f -3 3.1D

t

Since V(t-1) £ ¢2(t-1), therefore

8- e —9 0D 3.12
PG -

Stibstituting (3.12) in (3.11) gives a sufficient condition for.8*(t) € E; as

- . = k [P'l(t_l)]
P (t- DIAIE+2M A o3 (1 = 1) —mmasde " 70
heanae [P (£ - DIA@IZ 420 AN 52 (1= 1) e

A s a2
<——¥" -y 3.13
U (3.13)
Solving this quadratic inequality then yields (3.6). VAAY

[t can be seen from (3.6) that if A; = 0. then the difference between ¥2 and ¥2 can not
be exploited to increase the tracking capability of the algorithm. In this case, 6™(t) e Eqif
and only if 87(t) € Er.j. Thus if 87(t) jumps out of Ey.}, and no updates are performed at
future time instants r+i, then 8*(t+i) ¢ E4, = Ei.1, and the parameter may never be
tracked. However, it can be argued that an update will be performed in a finite interval of
ume. This is shown heuristically, by examining the expression for the magnitude of the
prediction error

1B =1 [{67(1)-8(t-D]TD(t) + vt |
Assume that no updates are performed for a large interval of time say, from time instant 7 to

time instant £ + Ny. From (2.11) it then follows that
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If the input and noise sequences are sutficiently rich. then the regressor vector d(t) will

span. the parameter space in all directions and so [8"(t+i)-0(t-1,]Td(t+i) will not be

.. arbitrarily small for all i € [0, Ny]. If Iv(t+i)l is close to its true upper bound ¥ for some i

in the same interval, and if {v(t)} is sutficiently uncorrelated with the input {u(t)}, then the
above inequality will be violated and an update will be performed. It is also clear that to
ensure that an update is-performed eventually (i.e., violation of the above inequality), the
threshold ¥2 should not be chosen much larger than ¥2.

If the parameter variation is such that (3.2) is violated then 6*(t) ¢ E,. The next
theorem shows that if 8%(t) remains fixed after it jumps out of E; and if the jump is not
large enough to cause the subsequent ellipsoids E4, to vanish, for i 2 0, then the DHOBE

algorithm guarantees that the true parameter will be tracked (enclosed) in finite time.

Theorem 4. Assume that the parameter variation at time instant ¢ causes 8*(t) ¢ E,.
Assume further that:

(1) After this variation , the parameter remains constant (i.e., the jump parameter case).

(2) o2(t+i) >0, foralli > 0.

(3) The algorithm does not stop updating.

(4) A lower bound p is imposed on A, at all updating instants.

Then there exists an Ny >0, which depends on the amount of parameter variation and the

actual and user set noise bounds, such that 6%(t) € El+N1-

Proof: Since 67(t) ¢ E, , define
N = 180 -8%(OIP (OB =8 *(1)] - 6% (1) > 0 (3.14)

Assumpuon (1) will imply that A(t+ Ny) = A(t+1) =0 for arbitrary positive N,.

Substituting 1n (3.9), and iterating from t+N, 10 t+1 vields

=Ny teN,s B
V+N) - (t+N)=n]J=h)+ Y q . 170 =7] (3.15)
i=t+l 1=t+]
3
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;kfﬂ(i-}x‘; ifi<t

3

. ifi=1

Assumption (3)will ensure that some of the Ay, i 2 0, will be non-zero. This ensures that
the first term on the right hand side of (3.15) will tend to zero. Since the second term on
the right hand side of (3.13) is negative, the difference V(t+N;) - 62(t+N,) will tend to

zero as Nj increases. Thus there exists an Ny such that

V(t+Ny) = 02(t+N)) €0 (3.16)
Thereby ensuring that 67(t) € Eun. AAY)

IV. A RESCUE PROCEDURE

In many cases when the parameter jump is large, or if the ellipsoid has shrunk to a very
small size, the intersection of E.; and S, can be void. This situation is illustrated in Fig. 3.
In such cases, 62(t) will become negative, thus indicating that a bounding ellipsoid could
not be constructed. To circumvent such a failure of the algorithm, a rescue procedure is
proposed. If at any time instant 7, 62(t) becomes negative, then 62(t-1) is increased by an
appropriate amount, thereby increasing the size of E,.; so that the intersection of S, and this
enlarged E,.; will no longer be void. As such, an ellipsoid E, will be constructed.
Alternatively, ¥* could be increased to permit a non-null intersection. However, the former
procedure is preferable because it causes 6(t) to migrate towards 6°(t), thereby reducing the
parameter estimation error. The rescue procedure is similar to the covariance resetting
technique used in RLS algorithms to cope with time varying systems. However, in the
RLS case, a jump in the parameters has to be detected by some other means before the
covariance matrix can be reset whereas for the DHOBE algorithm. o2(t) becoming negative
is an automatic indicator of a jump. The amount of increase in G2(t-1) required to make
G4(1) positive in such a case is now calculated.

Recall that the optimal updating gain A, is the one which minimizes o2(1). The

minimum oceurs either at a stationary point of 6=(t) or at one of the boundaries A, = 0) and
9
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7= o Since 1tis assumed that 3 faiiure occurs wnen 6=(t-1) > and o-t) < 0. therefore
an update has to occur atz and-so Ay = ). The case that the minimum occurs at a stationary
point which is smctly inside the interval [0.ct] and the case that the minimum occurs at Ay =
« are considered. separatély.

dcz(t)!

7, =V
v MmN

Case 1.

=0 and O<vi<a

From (2.13) it is clear that this case occurs if and only if 1+ B([G(t)~1] > 0 and v, < @..
Setting the derivative of 62(t) in (2.8) to zero vields

l ";\.‘ 2 ;\..G(t)

0 (t) +

—_— . - 8 =0
1=, +4,G(1) th= 4, +A,G(1)° (®

-t (t-1 -

‘Substituting 62(t-1) from above into (2.8) yields

(1-A)

()= v 4,
(-4, +AG()* (=7 4.1

o (1) +

Thus o2(t) is negative if and only if

150> 1-A, +le(t)Y
1-X,

On substituting for A, from (2.13b) and (2.13¢). (4.2) can be expressed, respectively, as

G(t)-1 y
VGO +BMGn-D] -1
and (4.3)

2y co
| — fGt) =1
d(u)l> 20 if G(1)

(4.2)

(> if G(t) =

Using the definition of f(t) from (2.16) in (+.3) and manipulating terms vields a necessary

and sufficient condition for 62(1) 10 be negative in terms of 2(t-1)

. 2 YIG() - 11H8I)°
(-1 50+ G -1- L =K. i
oo (t-1)< G(t)-l[ O+ y[G()-1] o } G = 1
and
o2(t-1) < 82 + 2 - 2y| 8 | = K, if G(y =1

Note that the last inequality was obtained because v, = (1-B(D)/2 < 1. hence 1+ B(1) > 0.
Thus if the calculated value of 6°(t) is negative. the rescue procedure will replace 62(t-1)

by K= . where J is a posttive constant. thereby increasing the size of E,.;. The optimum
10
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updating. gain will then be recaiculatea and the resulting value "v1il be used to calculate
o2(1), 8(t) and P(t). Our simulation studies have shown that using a value of £ = 1 vields

satisfactory results.

Case 2. iy =«
In this case, from (2.8), ¢2(1) is negative if and only if

83 2 [ —ou—ocG(t)][cr(t D, lz-a}

Thus o2(t) is negative if and only it

szt-l) <

2 o2
Sl (RS A
tl-a+aG(t) 1-a -
In this case o(t-1) would be replaced by Ka + { and the value of the updating gain would

be recalculated and used to calculate 62(t), 6(t) and P(t).

V. SIMULATION EXAMPLES
The tracking properties of the DHOBE algorithm are studied for an ARX(1,1) model
y(t) = ay(t-1)+ bu(t) + v(t)
The nominal values for the parameters were a = -0.5 and b = 1.0. The noise
sequence{v(t)} and the input sequence{u(t)} were both generated by a pseudo-random
number generator with a uniform distribution in {-1,1]. This corresponds to a signal-to-
noise ratio (SNR) ¢f 0 dB. For the DHOBE algorithm, we chose o = 0.2, ¥2 = 1.0, and
62(0) = 100. In all the examples shown here, the parameter estimates are taken to be the
centers of the optimal bounding ellipsoids. The parameters were varied as follows:

Case 1. Slow variation in the parameter vector

The parameters a and b were varied by 15 for every 10 samples. starting from the first
sample. and the output data {y(t)} were generated for r =1.2....1000. It was then observed
that the bounding ellipsoids created by the DHOBE algorithm contain the true parameter at
Al time nstants.  The final parameter estimation error was 7.0x10-3. The parameter

estimates, i.e.. the centers of the OBE. are plotted against the true parameters in Fig. 4.

11
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‘From the figure it1s clear mat the DHOBE aigoriinm tracks guite well slow tume variations

in the parameters.

Case 2. Slow variation in the parameter vector from ¢ = 500

The parameters « and b were varied by 1% for every 10 samples. starting from the
500th sample. The final parameter estimation error was 3.0x103. All the bounding
ellipsoids were seen to contain the true parameter, The parameter estimates are plotted
against the true parameters in Fig. 5. The figure shows that the algorithm can track slow

time variations in the parameters even after it has "converged".

Case 3. Jump in_the MA parameter at £ = 300

The parameter b was changed by 100% at the 500t sample, and a was kept constant at
its nominal value at all times. Several runs of the DHOBE algorithm were performed with
different input and noise sequences. It was observed that the true parameter vector was out
of the bounding ellipsoid at +=500 and would be recaptured by the bounding ellipsoid after
some number of samples (usually less than 50 ) thus verifying the claims made in Theorem
4, It was also observed that the jump causes the resulting bounding ellipsoids to have
smaller sizes. Intuitively, a jump at time ¢ causes the set S, i2 ¢, to have a smaller
intersection with E,., und so the ellipsoid which bounds the intersection is also smaller. In
one particular run, the parameter was recaptured at 7 = 530 and the final parameter
estimation error at 7 = 1000 was 1.3x10-%. The parameter estimates (the centers of the
bounding ellipsoids) are plotted against the true parameters in Fig, 6. Figure 7 shows the
parameter estimates obtained for this run by applying the RLS algorithm with a forgetting
factor A(t)= 0.9 and Att) = 0.99. Obse-ve that the RLS parameter estimates are extremely
jumpy when Aty = 0.9, probably because the forgetting factor is not large enough to
average out the noise. Figure 8§ shows the estimates wien the variable forgetting factor
proposed by Fortescue and Kershenbaum [13] is incorporated into the RLS algorithm.

This variable forgetting factor, A(t), 1> a function of the prediction error and is given by

12
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A.value of o' = 0.01 was used because 1t vields steady state tracking error of about the
same magnitude as-does the DHOBE algorithm. From these figures. it is evident that the
DHOBE algorithm can track jumps in the parameters at least as well as the exponentially
weighted RLS algorithm,

The effect of varying ¥2 was also studied. A value of ¥2 = 2 was taken. In this case,
the true parameter did not jump out of the bounding ellipsoid at ¢ = 500. The parameter
estimates are identical to those in Fig. 6. But the ellipsoids are larger, as expected.

For a different run, i.e.. with a different input and noise sequence, the jump at t =500,
caused 62(t) to become negative. The rescue procedure was then used and yielded
remarkable results. The true parameter was captured immediately at ¢ = 501. The final

parameter estimation error was 2.4x10-4, Figure 9 shows that the parameters are tracked

extremely rapidly in this case.

Tracking Performance in Gaussian Noise

It is well known that least-squares algorithms are optimal in the constant parameter case
for Gaussian distributed noise. [t i3 thus interesting to compare the tracking abilities of the
DHOBE and RLS algorithms in Gaussian noise. The same ARX model was used with the
noise sequence v(t) now being generated as zero-mean white Gaussian noise with variance
0.25, which corresponds to an SNR of 1.25dB. To satisfy the bounded noise assumption,
v(t) was truncated to the range [-1,1], resulting in a slightly larger SNR. The parameter b
was changed by 100% at the 500th sample, and a was kept constant at its nominal value at
all times. Several runs of the DHOBE algorithm were performed with different noise
sequences. As in the uniform noise case. it was found that in a few runs, the rescue
procedurs was activated, consequently causing extremely rapid acquisition of the
parameter. [n most of the runs, the true parameter was acquired by the be.unding ellipsoid

without requiring rescue. The acquisition usually happened in les, than twenty samples
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after the change occurred. Figure (0 compares the :racking perrormance of the RLS
algorithm: (with Att) = 0.9 and At =1.99) to the DHOBE algorithm for a run in which the
rescue procedure was not activated. The curves shown are plots of estimates of parameter
b by both-algorithms. Itis seen that RLS with A1t) = 0.9 seems to track a little faster than
the DHOBE algorithm. However the steady state RLS estimates are extremely jerky. The
racking performance of RLS with A(t) =0.99 is definitely inferior to that of the DHOBE
algorithm, however its steady state performance prior to the jump is superior. Another
point of note is that the DHOBE estimates become much less jerky after the jump on

account of the decrease in the size of the ellipsoids.

VI. CONCLUSION

The tracking properties of a recursive set-membership parameter estimation algorithm
viz. the DHOBE algorithm have been investigated. Some sufficient and other necessary
conditions which ensure parameter tracking have been cierived. A modification of the
DHOBE algorithm is proposed to improve its tracking capability for larger parameter
variaticns, Simulation results show that the tracking performance of the DHOBE algorithm
is comparable to that of the exponentially weighted RLS algorithm. In some cases of large
parameter Jumps, the automatic activation of i rescue procedure causes the parameters to be

tracked extremely rapidly.
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rigure 3.

A case in which a jump in the parameter causes the
intersection of E,.; and S, to be void.
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CHAPTER 1

INTRODUCTION

1.1 Formulation of the Adaptive Filtering Problem

An adaprive filter is one which can adjust its impulse response through time in order
to reach some desired level of performance. The means of adjusting the adaptive filter is
accomplished through an adaptive algorithm. This type of filtering is especially needed
when dealing with unknown and/or changing environments. Many useful applications
have been found for the adaptive filter, such as noise cancellation, echo cancellation in
phone lines, equalization of a communication channel to combat intersymbol interference,
and system identificaton. Detailed descriptions of these and other applications of adaptive

filters can be found in [Ha86), [Wi75], [Ho84], and [Qu85].

The adaptive filtering problem will be approached here in the context of system
identification. This is an important area of study for adaptive systems, since many
applications of adaptive filters can be put in this context. In system identification, it is
desired to characterize a system, usuaily called the plant (see Figure 1.1), with an adaptive
filter, based only on the observable input/output data sequences, x(n) and y(n) (see Figure

1.2). The plant/adaptive filter combination will be referred to as the adaprive system.
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1.2 Notations

The systems of interest in this presentation for the plant and adaptive filter are those
which can be represented by linear constant-coefficient difference equations. In the
literature, there are three popular notations which are used to express this difference
equation input/output relationship. The one that is used depends largely on ease of
explanation and the type of results that are needed. However, the varying notations can
also be a source of confusion, It is attempted here to explain these three notations in order
to avoid future misunderstanding of their meaning., The following notational examples

describe a system with input x(n) yielding an output y(n):

1)  Differenc: equation notation.

This is the standard notation found in most texts dealing with digital signal

processing [Op75,Ch.1]:
My Ny
y(n) = —Za;y(n—i) + Ebix(n—i) (L.
i=1 i=0

The minus sign here is arbitrarily chosen to be consistent with the operator notation, shown

next.

2) Operator notation.

The operator q-i, is chosen to represent a delay in its operand signal of i samples,
i.e., g-ix(n)=x(n-i). This is analogous to the z-ransform representation of a delayed
signal. Itis now possible to represent (1.1) in operator notation by defining the following

polynomials:
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— 0 piAdaptive Filterp—2t——p

Figure 1.2 The adaptive filter

Referring to Figure 1.1 and Figure 1.2, it is seen that two structurcs must be

decided upon in the system identification problem, yielding a two-step modelling process:

1 The model of the plant structure. This decision is based on some
knowledge of how the output signal, y(n), is generated from the input

signal, x(n).

2) The adaptive filter structure. Thi< decision is based on practical restrictions
on the complexity of the adaptive filter and/or its corresponding adaptive

aJgorithm.

In Chapter 2, an assumption which is common in the field of system identification
will be made on the plant structure and two popular choices for the adaptive filter will be
investigated. These two structures of adaptive systems are seen in Chapter 3 to yield two

tamilies of adaptive algorithms.
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A,(Q'l) =i1+aiql+aq? + 0 anﬂ'“a
B(q!) =bg+bjqt +bag2 +--- + bny ™"
‘An equivalent expression to (1.1) is thus:

A(qD)y(m) = B(q)x(n)

Note y(n) can be solved for, thus yielding:

B(q!)

(n) =
ARYCS)!

x(n) (1.2)

It is important to note here that the operator polynomial appearing as a denominator term in
(1.2) implies the existence of an autoregressive component in the determination of the
signal y(n). In other words, y(n) depends on past values ('"regressive") of itself ("auto") in

addition to the current and past values of the input.

It may appear as if there is a mixing of frequency domain and time domain notations
in (1.2). However, this is not the case, since the delay operator was not defined as a
complex transform variable as in z-transforms. In interpreting (1.2), it is helpful at first to
mentally muitiply the expression through by the denominator polynomial, A(q‘l). Since
A(q‘l) begins with a "1," the first term is y(n) and all the other terms are autoregressive,
and can be moved to the right of the equation, yielding the explicit expression for y(n) of

(L.1).

An example of operator notation which will be seen often is a pure autoregressive
filtering of a signal. This operation, applied to a signal y(n), appears in operator notation

as:




where the prime () character is used here to denote the autoregressively filtered version of
the unprimed signal. Expanding this notation as described in the previous paragraph yields

the explicit difference equation relationship:

A(q)y'(@) = y(n)

n:l
y'(n) = y(m) - Y ajy'(n-i)

i=1

3) Matrix notation.

—Another convenient means of expressing (1.1) is through matrix operations. Define

the parameter vector, 6, as:
T
0= [al ag * ap, by by -+ by, ]
Also define the regressor vector, ¢(n), as:

o) = [-y(n=1) —y(n-2) -+ —y(n-ng) x(n) x(n-1) +* x(n-np)]"

These definitions lead to the following equivalent expression for (1.1):

y(n) = 8Tg(n)

1.3 Difference Equation Structures

There are five difference equation structures that are the most commonly
encountered and dealt with in the literature. In the following, they are presented in terms of
the plant structure of Figure 1.1. Note that an unobservable, zero mean white noise
component, v(n), is present in all the cases, since an approximation is generally acceptable

if it is correct up to some random, independent, zero mean amount. The corresponding
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adaptive filter structures are obtained by adding a caret (") on top of the plant quantities
v(n), aj, b;, ¢, ny, 0y, 0.7, and providing an estimate of the terms involving the
unobservable signal, v(n). When v(n) appears alone as an additive modelling error of the
plant, its-estimate is the expected value, which is zero. In other words, the v(n) term is
simply dropped in these cases (which are shown as structures 1) - 3) below). The five
structures, in order of increasing complexity, shown in both difference equation and
operator notation, are:
1) Exogenous (X)

ny
y(n) = Zbix(n—i) + v(n)
i=0

y(n) = B(q-1)x(n) + v(n)

2) Autoregressive (AR)

Ny
y(n) = =Y ajy(n-i) + v(n)

i=1

A(q))y(m) = v(n)

3) Autoregressive, exogenous input (ARX)

na nb
y(n) = —gaiy(n—i) + Zd)bix(n—i) +v(n)
= It

A q'l)y(n) = B(q‘l)x(n) + v(n)

4) Autoregressive, moving average (ARMA)

Ny Ne
y(n) = —Zaiy(n—i) + ZCiv(n—i)
i=1 i=0

¥ The caret used in this manner denotes a quanuty which is an estimate, in some sense, of the
comresponding "uncareted" quantity,
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A ym) = C(q!)vin)

S5) Autoregressive, moving average, exogenous input (ARMAX)

fa b e
y(n) = =Y ay(n-i) + 3 bix(a-i+ Y ev(n-i)
i=0 i=0

i=1

A(q))y(m) = B(q~1)xm) + C(q-1)v(n)

The ARMAX model is the most general model which will be considered here, as it
contains all previously mentioned models 1) - 4) as special cases. Examples of other more
general approaches to modelling are given in [Lj83] and [Ab88]. Specifically, the Box-
Jenkins model is discussed in [Lj83], which extends the ARMAX model by replacing the
A(q!), B(q!), and C(q!) polynomials with rational functions of polynomials. In
[Ab88], the plant is modelled as a linear, continuous-time, time-varying process with no
constraints on the order of the system. It is shown there how this very general model

yields a nonlinear adaptive filter.

The extent to which a given plant can be identified with an adaptive filter will
desend of course on how well the chosen plant structure approximates the true physical
system, and also on which structure is chosen for the adaptive filter, as will be seen in
Chapter 2. This two-step modelling process is crucial to the success of any adaptive

filtering problem.

1.4 Applications of Difference Equation Structures

It is helpful to see how the difference equation structures presented above are
utilized by considering two examples of their use in practical situations: Linear predictive

coding and echo cancellation.
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1.4.1 Linear Predictive Coding ‘(LPC) Speech Modelling

An important modelling example in adaptive filtering is the charactenization of the
vocal process for the reproduction of speech. The LPC technique for speech modelling is a
"black box" method, which assumes a known input of either an impulse train (for voiced
sounds) or white noise (for unvoiced sounds) applied to an unknown time-varying system
whose output is the final voice signal (See Figure 1.3). The unknown system corresponds
to the."plant" in Figure 1.1 and the two-step modelling process of Section 1.1 must be
applied in order to characterize this speech-producing system with an adaptive filter. When
this is accomplished, speech sounds can be reproduced by exciting a system with the
appropriate input signal having the same characteristics as the vocal tract plant. Since these

characteristics are time-varying, the adaptive filter is especially suited to this application.

Impulse
Train )
Voiced @) 1 -
e v(n n
: > A »y
Unvoiced @
White Vocal-Tract
Noise Plant

Figure 1.3 A model of speech production

Following the two-step modelling process, it has been seen experimentally that an
AR model for the vocal tract is a good choice for the plant structure of the adaptive system
(See Figure 1.3). As for the adaptive filter structure, note that the input is not accessible to
the adaptive filter. However, the input is assumed to be either white noise or an impulse
train. Therefore, if an adaptive filter could reproduce the input given only the output voice
signal, it would characterize the inverse of the vocal tract plant, and thus characterize the

vocal tract itself. It can be seen that an adaptive filter with an X strycture having input y(n)
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and output e(n) (See Figure 1.4) can accomplish this inversion when the adaptive filter
coefficients are adjusted such that by=ay, i=0, -+, fiy=n, (ag=1). It is shown in [Ha86]
that choosing Bi parameters such that the mean-square value of the adaptive filter output,

e(n), is minimized will yield parameters such that 5i=ai.

y(n) o () e(n)

Adaptive Filter

Figure 1.4 X structure for adaptive filter

1.4.2-Echo Cancellation

In telephone communication, a problem arises when the signal, x(n), which is
transmitted over long distances via a "four-wire" line, reaches the "two-wire" line of the
destination phone. An echo, y(n), is generated at the meeting of the two transmission lines
(the hybrid), due to an impedance mismatch. This echo subsequently travels back to the

source, which the speaker hears (see Figure 1.5).

Four-wire line x(n)

l

Hybrid

Two-wire line

< Four-wire line

y(n)
Figure 1.5 Echo generation in phone lines

If the hybrid characteristics were known, a fixed filter could be placed in parallel

with the hybrid. The filter output would then be subtracted from the hybrid output, y(n),
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thus cancelling the echo. Since the hybrid characteristics are not known and may be time
varying as well, a fixed filter will not solve the problem. However, an adaptive filter in
this configuration producing an output, y(n), has been shown to accomplish very well the
task of echo cancellation when the adaptive filter coefficients are adjusted such that the
mean-square value of the error signal, y(n)-y(n), is minimized. This is illustrated in Figure
1.6, where H(q!) and H(q-!) stand for rational functions of the operator polynomials
introduced in Section 1.2, analogous to the transfer function representation for linear, time-

invariant systems.

x(n)

" H(q™")

v(n)

e(n) -
)
Figure 1.6 Model of hybrid and echo cancellor

At this point, again, models must be decided upon for both the hybrid "plant" and
the adaptive filter, through specific choices for H(q~!) and H(q-!). The hybrid has been
modelled in different ways, giving rise to various adaptive filter structures. The simplest
model of the hybrid is to consider it as an X process [Ha86], [Ho84]. In other words, y(n)
depends only on a weighted sum of past inputs. Since the input is available for use by the
adaptive filter, the X structure should be adapted so that bi=b;, i=0, - - ,ip= ny, and thus
the error signal will be only white noise. This plant/adaptive filter combination

corresponds to the choices:
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H(q)=B(q")
f(q1)=8(q ")
where B(q—l) and ﬁ(q-l) are defined as in Section 1.2.

A slightly more complicated structure for the hybrid models it as an ARX process,
which computes its output as a weighted sum of both the incoming signal, x(n-1), i=0,
+++, np, as well as its output y(n-i), i=1, -+ ,n,. This is a more realistic system, as this
recursive structure contains poles as well as zeros. Note that the adaptive filter in this case
can still be chosen with an X structure, because both signals x(n) and y(n) are available to
use as inputs. When the adaptive filter weights which multiply x(n-i), i=0, ---,fy, are
equal to the corresponding b;, and those which multiply y(n-i), i=1, -++,1i,, are equal to

a;, the error signal will again be white noise,

Finally, a model [Fa88] which is more realistic and which will be considered in
some detail later, is to represent the hybrid as being an ARX process with no internal noise
term as in the ARX process above, but whose output, p(n), is corrupted by white
measurement noise, v(n). It will be shown in Chapter 2 that this model of the hybrid is
actually an ARMAX process with ¢j=g;, i=1, -+, n,. It will be further be shown that the
proper structure for the adaptive filter to cancel the echo is the ARX structure. In other
words the adaptive filter must be recursive (IIR) in order to cancel the echo, y(n), produced
at the hybrid. Referring again to Figure 1.6, this plant and adaptive filter are characterized

by:

B(q1)

H(q!) = A
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Note that if v(n)=0, the situation reduces to the ARX plant described in the preceding
! paragraph. Thus the simpler X structure adaptive filter with inputs x(n) and y(n)=p(n) can
be used, The system structure for this situation is slightly different than the one shown in
Figure 1.6, and is shown in Figure 1.7. In this case two FIR filters are used - one which
realizes the zeros, and one which realizes the poles of H(q—l). It is important to see here

how, when A(q-!) = A(q!) and B(q~!) = B(q~!), the signal e(n) is zero.

j x(n)

: B(q™!)

: B(q-! S\a)

() Ala)
+ y(n)

< ) Y, Jo—ri A(q*‘) P

Figure 1.7 Echo cancellation for a recursive plant when v(n)=0

1.5 The Mean Square Error Criterion

In order for an adaptive algorithm to adjust the impulse response of its adaptive
3 filter, the algorithm must somehow be able to gauge its progress to determine how to make
the adjustment. A natural criterion on which to base this adjustment is the difference
between the output of the plant, y(n), and that of the adaptive filter, y(n). Thus the error

signal is defined as e(n)=y(n)—§(n)’f . Intuitively, the magnitude of the error signal should

¥ The notation e(n) wall be used to refer to the error signal of any adaptive system. In Chapter 3, error
quanuties for specific adapuve systems will be defined as ee(n) and oe(n). The cause of the difference

between ee(n) and oe(n) will be seen to be the m. .aer in which the adaptive filter output, )Ar(n). is generated.
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be as small as possible for desired operation. Mathematically, however, the criterion
ly(n)=y(n)| isn't very attractive. A mathematicaily sounder criterion leading to efficient
adaptive algorithms is the mean - square error (MSE) which is expressed as E { e2(n) }
The squaring operation provides an alternative to the absolute value operation. Statistical
expectation is needed because, as noted previously, the plant models are all assumed to be

accurate to within an independent, zero-mean noise term, v(n).

The squaring operation can also be viewed as providing a criterion which tends to
emphasize larger values of the error signal while diminishing the importance of smaller
errors, as opposed to the absolute value operation, which linearly assigns an error penalty
according to the magnitude of the error, le(n)l. This is an intuitively reasonable
chara:t;ristic for a criterion of "goodness" to have. However, this also causes some
algorithms to adapt more slowly as the MSE of the adaptive filter decreases. Depending on

the goal of the adaptive system, this may or may not be of significance.

1.6 OQOverview

In what follows in this thesis, some basics in the area of adaptive systems from the
perspective of system identification will be developed, as well as experimental results
obtained by the author. In particular, Chapter 2 introduces two important classes of system
identification models: The equation error and output error adaptive systems. Chapter 3
presents methods of adjusting an adaptive filter (i.e. adaptive algorithms) in the context of
both the equation error and output error adaptive systems. This will be seen to give rise to
two different families of adaptive algorithms. In Chapter 4, an adaptive algorithm is
presented which combines elements from two adaptive schemes studied in Chapter 3.
Simulation results are given which show empirically that the algorithm works, and

comparisons are made with the standard method. Finally, two output error algorithms
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develuped by the author are presented for review. These are preliminary results and no

simulations have been performed yet.
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CHAPTER 2

CONCEPTS OF ADAPTIVE FILTERING

2.1 Modelling Techniques

In system identification the plant structure is usually modelled as a rational transfer
function whose output, p(n), is corrupted by additive white measurement noise, v(n), to
yield the observable signal, y(n) (see Figure 2,1), This plant is a special case of the
ARMAX structure, which can be seen by taking the expression for the output:

_B(q)
=)

and multiplying through by the A(q~!) polynomial to yield:

——x(n) + v(n)

A(g)ym) = B(q)x(m) + A(g-)v(n)

Or, equivalently, using difference equation notation:

n n n
y(n) = —zaiy(n»i) + ﬁbp((n—-i)«&- za;v(n-i) (2.1)
i=1 i=0 i=0

Note in the last summation above, ag=1. Itis thus seen that the plant structure of Figure

2.1 is a special case of the ARMAX structure with c(g)=A(q).

15
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v(n)

xm_,| Bl@) | pm o/
A(gt)

Figure 2.1 An ARMAX plant with C(q~1) = A(q-!)

vin) >

Given this plant, there are two approaches that can be taken in modelling this plant

with an adaptive filter — the equation error approach and the ousput error approach.

2.1.1 Equation Error Model

Since x(n) and y(n) are both measurable, the simplest approach is to use these
signals to form the output of the adaptive filter similar to how the plant forms the output in

(2.1). This approach yields the expression for the adaptive filter output:
R iy iy "
y(n) = =Y H-1y@-i) + Y bi(n-1)x(n-i) (2.2)
i=1 i=0

Since the v(n) terms of the plant can not be measured, they will be neglected. Note that the
last available values of the adaptive filter parameter estimates, &;(n—1) ana by(n—1), are used
to determine the adaptive filter output. An adaptive algorithm uses the error signal, y(n)-

y(n), to determine the new "current” estimates, 4;(n) and b;(n).

The expression (2.2) can be expressed in matrix notation as:

y(n) = 8(n-1)TQee(n) (2.3)
where the regressor vector, Qe.(n), is defined as follows:
Pee(n) = [—y(n-l) veo =v(n-2y) x(n) --- x(n-nb)] T

Using operator notation, the description of the adaptive system is:

27




v@)=[1-A( ) ]y + B(a)x@m) + A(g=H)vin) (2.4)

ym) = [1-A(qLn=1) Jy(@) + B(g!,n-1)x(n) 2.5

The appropriate structures of the equation error model,resulting from the two-step
modelling process described in Chapter 1, can be recognized from (2.1) and (2.2) for the
plant and adaptive filter as ARMAX and X, respectively.

This adaptive system generates an error signal y(n) — 9(:1) known as the equation

error, ce(n). Subtracting (2.5) frota (2.4) yields:

ee(n)-= y(n) - y(n)

——

=-[A(g)-A(gtn-1)]y(m) +

[B(q-1)-B(q-1.n~1) Jx(n) + A(q1)v(n) (2.6)

Re-expressing (2.6) utilizing matrix notation yields the following useful relationship
between ee(n) and the parameter error vector, 0 = ep-é(n—l):

ee(n) = B(n-1)Tp,e(n) + A(q~!)v(n) (2.7)

An alternative expression for ee(n) can b¢ obtained fiom (2.6) by noting from (2.1) that
-A(q*l)y(n)va(q—l)x(n)+A(q-‘)v(n)=O. This yields the following expression for the

equation error:

ee(n) = A(q-1,n-1)y(n) - B(q-1,n-1)x(n) (2.8)

Equation (2.8) implies the series-parallel structure of Figure 2.2 for the equation error
model of an adaprive system. Note that :\is structure requires only FIR filters for its

implementaton.
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1 v(n)

< ) A(‘G‘—;'n—i)r

x(ny - ee(n)

—

B
" A

- . - l"'ﬁ(q"l,ﬂ-rl)

Figure 2.2 Series-parallel structure of the equation error adaptive system

2.1.2 Output Error Model

The output error model adaptive filter attempts to duplicate the structure of the
assumed plant model. This adaptive system can most easily be introduced through a

diagram of its structure, shown in Figure 2.3,

v(n)

B(q™!)

> :
AlgY)
x(n) -
SRS
Bfg-t,n-1
o ot )

AlqLo-1)

Figure 2.3 Parallel structure of the output error adapive system
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A few commments' are in order here regarding this alternative system identification
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e : fepe — o
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structure. Note the parallel structure of the output error model, in contrast to the series-

et

parallel equation exxor model structure. This implies that the adaptive filter is independent
of the plant, sharing only the common input signal. An important consequence of this
characteristic is that the noise, v(n), is not introduced in the adaptive filter, as it is in the
equation erfor model through y(n)=p(n)+v(n) (see Figure 2.2). Thus it might be
reasonable to expectthat the measurement noise, v(n), will have less of an effect on the
performance of the. output error model than the equation error model. This is in fact true,
as will be shown shortly. [t is also important to note that the adaptive filter in the output
error.model is an [IR filter, ‘In other words, the autoregressive portion of the adaptive filter
uses past values of &(n—i), i=1, -+ ,fi,, in determining its current output y(n). This is in
contrast to the equation error model, which uses past values of the plant cutpvt, y(n-i),

i=1, *+-,f,, in determining y(n). The output of the adaptive filter can be expressed

T oy T i fasti A TETY ~ T

-compactly in matri X notation similar to that of (2.3) for the equation error adapiive filter:
y( = B(n—1Tooem)

where

—

- - -

Qe = [—51-1) §(n-2) -+ ~§(n-fy) X(n) x(n=1) -+ x(n-fip)] T (2.9)

The difference of theregressors in (2.3) and (2.9) captures very concisely the fundamental

difference between: the equation error and the output error methods.

-

Referring vo Figure 2.3, the output error adaptive system is seen to be described by

the following equations:
Aq)y(@) =B (q)xm) + A(g!)v(n) (2.10)
A(qn-1)y) =B(g L,n-1)x(n) (2.11)
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The t,wo-step’.ri;pdéjlfih@‘prqc‘ess:deséribed in Chapter 1 has thus yielded the structures of

ARMAX and ARX {or thé plant and acaptive filter, respectively.

The expression for the error signal, y(n)—ﬁl(n),<can now be derived. This signal is

known as the output error, oe(n). Subtracting (2.11) from (2.10) yields:
A(g)y(m - A(q-Ln=1)y(n)

= [B(q‘l)-—ﬁ(q'l,n-él«)‘]x(n) + A(q-l)v(n) (2.12)

Tn order to get an expression for the output error, oe(n) = y(n)-y(n), either A(q~!)y(n) or

;\(q-l,m-l)y(n) can be added and then subtractéd to the left side of (2.12). This results in

two different interpretations of oe(n). Choosing A(q-1,n~1)y(n) yields:
A(q)ymy - A(g-tn-1)ym) + A(g-ln-1)y(m) - A(g-tin=1)y(n)
= [B(q"1)-B(q-1,n-1)Jx(m) + A(q!)vin)
Factoring oe(n) = y(n) - y(n) gives:
A(q-tn-1oem) + [A(q1)-A (g n-1) ]y
- [B(e")-B(artn-1) o + g vt
Solving for oe(n):
A(q-t.n-1)oe(n) =
(—[AG)-AarLa-) Ty B(a)-B (ot a-1) Jewea(a)vin )
The term in braces can be recognized as the equaticr error, ee(n). Thus

oe(n) = ee(n) (2.13)

A(q‘l,n—l)
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1tis of interést.to examine Equation (2.13). A relation is now apparent between the two

adaptive:system models. Namely, given the same iniput and noise sequence to both the

equation.error and output error models, the resulting error sequences are related through a

filtering by-the adaptive filter's denominator polynomial, A(q‘l,n—l). This relationship

‘will be exploited later in the development of an adaptive algorithm.

Choosing the term A(q~1)y(n) to add and subtract in (2.12) yields a relationship,
analogous to the equation error expression (2.7), between oe(n) and the parameter error

vector, 8(n-1) = 8(n-1) - 8, [Jo84}:
A(qym - Aga-1)ym) + A )y - Ay =

1B(q1)-B(g1,n-1)]x(n) + A(q1)v(n)

Similarly factoring and simplifying yields:
A(q)ee(m) + [A(q!)-A(q-t.n-1) y(n)

= [B(q-1)-B(g-t,n-1) Jxm) + A(q-1)v(n)

oe(n) = A(;_l) {-[a(@)-A(ata-1) Jym)

+ [B(q‘l)—ﬁ(q-l,n—-l)]x(n)} +v(n)

l =T
0e(n) = ———8 T(n-1)@qa(n) + v(n) (2.14)
Aq1) Poe

Expressions (2.14) and (2.7) make very clear the effect of the noise, v(n), in each
of the adaptive system models. In the output error model, assuming v(n) is white, the
noise power is simply 0'?', from (2.14). However, examination of (2.7) shows the noise
power of the equation error model to be (1+a:;‘+a§+ o +a§a)o*:‘,. Thus it is seen that the

measurement noise affects the output error model much less than it affects the equation
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grror.model. The.implications of these additional effects of the noise in the equation error

‘modes are discussed in section 2.3.1, in particular with respect to the quality of the:

‘parameter estimates, 8. It will be.shown that the presence of the measurement noise, v(n),

produces a bias.in the equation error estimates, 8, with respect to the plant parameters, 0y

2.2 The Mean Square Error Surface

As discussed in Chapter 1, both the criterion of performance and the adjustment
mechanism depenad on the nature of the error signal, y(n)—§(n). Therefore it is important to
examine the characteristics-of this signal for.the output error and equation-error models. In
particular, the mean square error (MSE) surface will be discussed for both models. The
MGSE surface is the relationship between the MSE and the adaptive filter coefficients. Later,
in Section 2.3.2, these characteristics will be examined as to how they affect the ability of

an adaptive filter to reach an "optimal" state,

2.2.1 Equation Error Surface

In the equation error derivations which follow here and in Section 2.3.1, the
parameter estimate vector, 8, will be considered to be a constant quantity with respect to the
statistics of the input process, x(n). This assumption is obviously not true, since, as will
be seen in Chapter 3, the parameters are updated by algorithms which use the input, among
other things, to accomplish the updating process. The following results effectively evaluate
characteristics of an adaptive filter whose impulse response, h(i)=éi, is set to some
arbitrary constant value. Consideration of the adaptive filter in this way permits the use of
techniques from Wiener filtering theory [Ha86, Ch.3]. This provides a means to evaluate

the perfermance of an adaptive filter and establishes a useful basis for comparison of an
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adaptive filter to the ideal, time-invariant situation. This is espectally valid under the

reasonable; common-assumption of a slowly time-varying adaptive filter.

In deriving the expression for the MSE surface, it is helpful to use matrix notation.
Recall equation (2.8), reprinted here in matrix form as well:

ee(n) = A(q1)y(n) - B(q-1)x(m) = y(n) - 8To(n) (2.15)
Note here that ee(n) is linear in the parameters. Thus ee?(n) is quadratic in the parameters,
yielding a parabolic MSE-surface, and is shown in the following. Squaring, expanding,
and taking expectations of (2.15) yields:

Efee2(n)] = E[y2(n)] - 2E[y(n)8Tom) ] + STE[pm)¢T(n)]8
Defining R(n) = E[p(m)¢T(m)], 03(\1) =E[y2(n)], and rearranging yields:

E[ee2m)] = o7(m) - 28TE[y(mom)] + BTR(m)B (2.16)
For stationary processes, The expectation operation-yields values independent of n. Thus
03(n)=63 and R(n)=R are a constant value and matrix, respectively, and the equation error
model possesses an error surface which is quadratic in the parameterst . This is a very

desirable property because many adaptive schemes require the MSE surface to have nv

local minimum points for guaranteed convergence.

Another useful expression for the MSEE can also be derived using (2.7), reprinted

here for convenience:

ee(n) = §T¢¢e(n) + A(q‘l)v(n)

Squaring and taking expectations yields:

¥ The notation for the MSE surface of E[ez(n)] is mathematically misleading because there is no
mdication of the dependence of this function on 8. However, this is the standard notation in the literature
and the dependence on 6 must be tacitly assumec,




Eee2n)] = 8TRE + 2BTE{ [A(q v ]geal) } + (14a17a5+ -+ - 425 )07

The second term can be simplified by first expanding the operator polynomial, A(q*l):

( -y(a-1)
~y(n-2)

n, )
E{ [A(q-l)v(n)](Pee(n)} = Eﬁ ZaiV(n—i) X(‘ﬂ) >
i=1 .

L _x(n;nb)_J

No_ting that v(n) is white and y(n)=p(n)+v(n) from Figure 2.1, it can be seen that the

‘sumination will expand as:
AT
v 0
] | .
=a1J‘ . |+ag O |+ -+ +ap)
Lod Lod v
=-o] " 2.17)
0.

Defining the vector a as the (fi,+iip+1)-dimensional vector in (2.17), i.e. as the plant
parameter vector 8p, with the b; parameters set equal to zero, gives the desired expression

for this term:

E[A(q))v(n)peem)] = o2
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x ’ Thus an alternative expression for the equation error, ee(n), is:
ii ~ ~ Ve 9 b) 2 i
Efee’(n)] =8TRB - 20,8Ta + (1+a +ay+ - - +a3 )9, (2.18)

TR

2.2.2 Output Error Surface

To find the expression for the MSE of the output error model, recall equation

(2.13); again neglecting the time dependence of the coefficients:

1
(n) = ———=¢e(n)
YO

oo iibe | b b sy

Exparrding the operator notation yields:

fiy
oe(n) = ee(n) - 3 a0e(n-i)

i=1

From this expression it is evident that oe(n) must be a highly nonlinear function of the 3;

TR LT

parameters, since it is the solution to a difference equation. The procedure for finding the
explicit expression for E[oe2(n)] in terms of the parameters & and b; is given in

[Wi85,Ch.7].

LA e

The highly nonlinear nature of the MSE surface in the output error model suggests

possible local minima in this surface. Indeed, it is this characteristic of the output error

model that causes most algorithms to fail. The problem of local minima, together with the

inherent stability restrictions of using an IIR adaptive filter, have severely limited output
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error modelling in practical situations. These issues are examined more closely in the

following section.

Sy
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2.3 Equation-Error-and-QOutput Error: A Comparison

In any practical situation, an appropriate model for the given problem must be
chosen. Therefore it is important to compare the output and equation error models. Three

important criteria on which to base this comparison are:

1)  Performance capability. In particular, it is of interest to examine the
minimum achievable mean square error as well as the quality of the
parameter estimates. In other words, what is the best performance that can

be expected from the chosen model?

2) Characteristics of the MSE surface. The nature of the MSE surface can
drastically affect the ability of an addptive algorithm to minimize this

quantity.

3) Stability considerations.

2.3.1 Performance Capability

It is clear that in the problem of system identification, the best achievable
performance will be limited by the amount of measurement noise, v(n). This is easiest to
see with the output error model of Figure 2.3. It can be seen that if ﬁ(q-l) = B(q-‘) and
A(q-l) = A(q-l), then oe(n)=y(n)-y(n)=v(n). Therefore the output error model will give
the best achievable performance when @=9p, yielding the minimum MSE of 0’3. In the
literature, i.e. [So88, eq.2.2], L83, p.109], v(n) itself is often defined as the output error,
since this is the error which results from the output error model with the adaptive filter
adjusted so that 8=6),. This can also be seen in (2.14), where oe(n)=v(n) if 6=8-6,=0.

Many adaptive schemes attempt to minimize the MSE, as will be seen in Chapter 3.
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“Therefore, using the: output error model, MSE - minimizing adaptive algorithms will
provide-what-are calded unbiased estimates of the plant parameters after convergence. The
term unbiased refers to parameter estimates, 8, whose ensemble average is equal to the true
plant parameters, 8;. In other words, E[8]=0,, after convergence. This is a desirable

property for an adaptive system to have.

If v(n) appeared by itself as an additive term in the equation error expression (2.7)
as it does in the output error expression (2.13) instead of being filtered by A(q-!), it could
similarly be reasoned that the equation error adaptive system simultaneously provides
unbiased estimates and minimum possible MSE of o% Such a situation would occur if the

plant had an ARX (71,>0, i,>0) or X (f1,=0, fi,>0), since for these cases:

y(n) = 8 0ce(n) + v(n)

y(0) = 6Tpe(n)

and therefore:

ee(n) = y(n) - y(n) = 8TQee(n) + v(n) (2.19)

However, for the current, more practical case of the ARMAX plant structure
appearing in the equation error adaptive system of Figure 2.2, the issue of MMSE and
unbiased estimates is not as intuitively clear. Observe in (2.18) that if
§=§—6p=0, then E[eez(n)]=(1+a?+aéz+ e +a§a)o‘3. If this MSE is in fact the minimum
MSE achievable with the equation error model, then this model would also yield unbiased
estimates. It is not clear from a cursory examination of (2.18) whether this is so, as it was
in the output error case upon examination of (2.14). However, since the MSEE is
quadratic in the parameters, there should be no trouble taking derivatives to find the
parameter which yields the minimum MSEE. Minimization will be on (2.18), repeated here

for convenience:
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Efeet(m)] = 8TRE - 20187 + (L+aj+a3+ -+ - 433 )0,

Since differentiation is with respect to 8, only the first two terms will have nonzero

derivatives. Differentiating the first term, remembering that 6=0,-9, yields:
d Mxrx ~
—]|6TRO | =-2R8
i}

Similarly differentiating the second term yields:

4 afpma] = 2c
d v

Now setting the derivative equal to zero gives:

-2R8,, + 2R +20%8 Ta = 0

Finally, solving for the parameter vector, 8*, which gives the MMSEE yields:

6* = R-i[Rep - cﬁa] =8,-0°R-la (2.20)

This is an important result. Examining (2.20), it is seen that one of two conditions must be

met if the.equation error adaptive system of Figure 2.2 is to provide unbiased estimates:

1) vin)=0

2) a=0.
Condition 2) states that the plant has no autoregressive component, which implies an X
plant structure. Further examination of (2.20) shows that as the variance of v(n) increases,

the a; parameter estimates will be increasingly biased. This is the major problem with the

equation error adaptive system. Note that the b; parameter estimates, however, will be

unbiased.

L---------h-
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It can further be Shown that. given neither of the above two conditions are met, the
minimum:value of the MSEE is-always greater than the minimum value of the MSOE,
which is 67, as follows. Subsituting 6" back into (2.20) yields the minimum value of the

mean-squared equation error;

Eec2m) | min = [o%R-la]T

2
R[c%R-la] + (1+a%+a§+ tortag )0‘3

a
fra]lac’

— A TR-1. 2,2 2,2 4 Tn-
=6 aTR-la + (L+ay+a,+ -+ +23 )0, - 20aTR-1a

= (1+aTa)o’ - caTR-1a

=’ +c% I-of,n—l]a 2.21)

It can therefore be seen that the mean-square value of the equation error will be always
greater than that of the output error only if the term in brackets in {2.21) is positive definite.
To show this, it is sufficient to take R to be the autocorrelation matrix of the plant output,
y(n), and a to be the n,x1 vector of the a; parameters without the zeros appended as in

(2.17). Since v(n) is white and y(n)=p(n)+v(n), it can be seen:

R=Rp+0l
Postmultiplying the term in brackets in (2.21) by R will not change its definiteness.
Performing this operation yields the desired result:

[I-GER-I]R <R-0:I=R,>0
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It can thus be seen that the equation error model, in addition to providing biased estimates
of the plant parameter, Op, yields a higher value of minimum MSE than the output error

model.

o Regarding this minimum MSE achievable by the equation error model, it is worthy
to note here a tradeoff that exists in this model, In general the minimum value of the MSEE
can be lowered by increasing fi, above n,, In fact, as fi;—ee, the MMSEE—)O’% [Wi75,
Sec.iV]. In other words, the performance of the equation error model can be arbitrarily

improved by increasing the order of A(q"l.n). This, however, increases the

computational burden and memory requirements of the adaptive system.

[ These results illustrate the superiority of the output error model over the equation
‘ error model in the system identification preblem, with respect to the ability to reach an
“optimal" state, which is now seen to mean that it can provide simultancous minimization
LE of the MSE .and unbiased estimates. This superiority is also intuitively reasonable, since
unlike the equation error model, the output érror adaptive filter is an IIR filter, just as the

assumed plant, and it would seem better to model an IIR plant with an IIR filter,

2.3.2 Characteristics of the MSE Surface

As noted in the previous section, many adaptive algorithms attempt to choose a
parameter, 8, in an (fiy+iy+1) - dimensional space which minimizes the mean square error.
This is implemented in recursive fashion in an «daptive algorithm in such a way that, given
its last selection for the parameter vector' , B(n-1), pick a new one, é(n), which yields a
lower MSE. This is done by effectively "looking down" the MSE surface from an initial

estimate, 6(0), and choosing the parameter at the bottom as the final estimate. Different

¥ Always having a “last” parameter esumate implies that the algorithm must be given an unitial estimate,
8(0j, before starting.
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algoritims-do this'in differént ways, but the main point here is that they are all wying to get

io that same "bottom ' point. This process works fine if the' MSE surface is reasorably
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'smooth and:has no local minimum points, since 'looking down" from any parameter vector

T

in the (fiy+iy+1) - dimensional space will-always léad to-the minimum point.

SRk

e

It was seen:in Section 2.,2.1 that the equation error model has a quadratic MSE
surface, This yields a "bowl-shaped" surface in the parameter space. Therefore the
minimum point can be found by "looking down" from any initial point, 8(0). Thus the

‘parameter yielding the minimum MSEE will always be reached.

The output error model, however, has a much more complicated MSE surface and,
as rioted in Section 2,2,2, it may have local minima. Therefore, simply "looking down"
the MSE surface may not lead to its global minimum point. Since there is no way for the
algorithm to know if it is at a local or global minimum, ‘it will converge to either, depending

on the initial estimate, 8(0). By converging to a local xixinimum point of the MSE surface,

the cutput error model loses its most desirable feature which was discussed in the previous

section: Simultaneously minimizing the MSOE (recall that this value is 0'3) and providing

unbiased estimates of the plant parameters, 6p.

The lack of global convergence of algorithms trying to minimize output error is the
major reason why use of the output error model has been mainly in computer simulations in
research labs and not in practical applications. Recently, however, an algorithm has been
developed which can provide unbiased estimates of the plant [Fa86). This algorithm uses a

criterion slightly different from the simplistic "looking down the MSE surface" approach to

RLAR LA A A

adapt the IIR filter of Figure 2.3. Since unbiased estimates are both a necessary and
sufficient condition for minimum MSOE in the output error model, this algorithm therefore
retains the desirable output error model property of simultaneous ourput error minimization
and unbiased estimates, but does not get stuck in local minima. This algorithm will be

studied in more detail in Chapter 3.
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2.3.3 Stability Considerations

Referring to the equation error structure of Figure 2.2, it is seen that this method of
system identification requires swo FIR filters for its implementation. Adaptive algorithms
perform particularly well when adapting FIR filters, with respect to speed of convergence

to the parameter estimate, 9, yielding the minimum MSEE.

The output error model, on the other hand, requires an IIR adaptive filter, as shown
in Figure 2.3. The fact that IIR filters have poles as well as zeros imposes a stability
constraint on the A(g~1,n) polynomial. This requires that every new estimate 8(n),
generated by the adaptive algorithm be checked to see if the resulting A(q1,n) is stable
(i.e. it has all i1s roots inside the unit circle). Factoring the ;\(q-l,n) polynomial to
determine its roets is a major computational burden when 11,25, however, meihods have
been devised [Ju64] which can check the roots of a discrete-time polynomial for the
presence of unstable roots, similar 10 the Routh-Hurwitz test for continuous time
polynomials. This eliminates the need to factor A(q-l,n). If it is determined to possess

unstable roots, then the unstable estimate,
Byunsi(n) = 8(n-1) + AB(n)
should be replaced with the stable estimate
Bg,(n) = B(n-1) + p(n)ABM)  where 0<p(n)<1 (2.22)

This process is known as stabiliry projecrion [Lj83, Sec.6.6]. Note that the choice of
ptn)=0 corresponds to effectively "throwing out” the unstable estimare, 8(n), by setting

8(n)=b(n-1).

An example of the process of stability projectior: for the case of fi,=2 is shown in

Figure 2.4. It is shown in [Ha86, Sec.2.8] that stability is maintained if ~.nd only if the

4
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point (a},,) lies in the trianguiar region shown. Given the previous estimate, 8(n~1), the
current esumate as generated by the adapuve algonthm, éunS[\n ), is shown to lie ourtside of
the stability region. To generate the estimate ést(“): AB(n) is repeatedly multipiied by a
small constant, |, 0<p<1, until 8(n) lies inside the riangular stability region, This yields a
value for p(n) in (2.22) of p(n)=pP, where p is the number of times that Aéunm(n) had to
be multiplied by p. Typically, the choice p=0.5 works well. In the example in Figure 2.4,
it is seen that after multiplying A8(n) by , the resulting parameter, 6(n) is stll unstable.

Multiplying again by p. yields the final stable estimate, B (n).

az
— i 81(n) Ounsi()

p2A8(M)\ 8, (n)

8(n-1 HAG
-+ L2

AB(n) a4

-1

Figure 2.4 An example of stability projection for fig=2

2.4 Summary

This chapter has illustrated in derail two very common examples of the two-step
modelling process of system identification as descnibed in Chapter 1. The equation-error
model and the output-error medel. The first step of selecting the plant structure was the
same for both models. In parncular, an ARMAX plant structure with C(q-1)=A(gq-1) was

selected. This structure corresponds to 4 plant modelled as having a rauonal transfer
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function with its output corrupted by additive white measurement noise (Figuie 2.1). The

second step - selecting the adaptive filter structure - is what distinguishes the output-error

model from the equation-error model

The equation-error model simply uses the observable plant signals x(n) and _(n) as
inputs to seperate FIR filters, generating the adaptive filter output, y(n), as in (2.2). This
yields an X structure for the adaptive filter. The error signal for this model, ee(n)=y(n)~
§(n), is shown to be linear in the parameters, 9, yielding a quadratic MSE surface, this
type of MSE surface is very desirable because it is mathematically weil-behaved and does
not contain local minima, as does the output-error MSE surface. However, the price paid
for the filter simplicity and quadratic error surface is biased estimates, shown in (2.20), and

minimum MSE which is greater than the measurement noise variance, G, shown in (2.20).

The output-error model employs an IIR adaptiw;é filter, yielding an ARX adaptive
filter structure, This model has the ability to simultaneously provide unbiased estimates
and optimal minimum MSE of 03 Howeyver, the tradeoff here is its MSE surface is highly
nonlinear and can have local minima. Furthermore, the adaptive IIR filter must always be
checked for stability before proceeding after a parameter update. This introduces the

addidonal computational burdens of stability determinaton and projection.
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CHAPTER 3

ADAPTIVE ALGORITHMS

In this chapter, recursive algorithms are developed in Sections 3.1 and 3.2 which
implement the process of "looking down" the MSE surface, as described in Section 2.3.2.

In Sections 3.3 and 3.4, algorithms are presented which use different criterion to identify

et 14
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the plant parameters, Op.

3.1 Gradient-Based Methods

The simplest approach to recursively find a minimum point of a surface is called the

steepest descent algorithm. This method is described by the following 3-step procedure:

1) Locate the direction at which the surface is most rapidly descending from

the last parameter estimate, 8(n—1).

2) Choose the current estimate 8(n) as the estimate resulting from taking a

small step away from B(n-1) in the direction determined in step 1).

3) Go back to step 1).

Mathemati<ally, the direction of step 1) above is related to the gradient of the MSE
surface. Consider a function f:IR"=IR. The gradient of f at a point xe IR", denoted

7f(x), is a generalizaton of the derivative of a function of one variable, and is defined as:

T
v«x):[ifﬁx_) o(x) af(x)]

0xy OXs ox,
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Given a point X on the f(x) versus x surrace. the direction 1n which the slope is maximum
is precisely the direction of the gradient vector. Furthermore, the direction of minimum

slope is opposite to the direction of the gradient vector [F177, Sec.3.5].

The gradient of the MSE surface, denoted by VE[e2(n)] (recail that VE[e2(n)] is a
function of 8), is thus defined as the vector of its partial derivatives with respect to the

parameters a;, i=1, -+, iy, and b;, i=0, : -+, fiy, as follows:

T
vE[erm] <[ ELE@] | GE[S] B[] BE[e2(n)]]

9y iy, 3bg aba,

Since the direction of minimum slope is —-VE[e?-(n)], the steepest descent method can thus

be expressed recursively as:

8(n) = 8(n-1) ~ uVE[e2(n)] 3.1)

where W is a small stepsize, which determines if and how fast the algorithm will converge.
It is shown in [Ha86,Sec.5.4], for the equation error adaptive system, that the steepest
descent algorithm will converge if O<pt<2/Ayay, Where Ay a, is the largest eigenvalue of the
correlation matrix R = q:Lpee(n)(pZe(n)]. Also, in general for gradient-type algorithms, the

rate of convergence is proportional to L.

Recall from Chapter 1, however, that adaptive filtering applications are precisely
those in which the environment of the adaptive filter (i.e. the plant in the case of system
identification) is unknown and/or changing. This makes taking expectations difficult if not
impossible. Therefore, in order to design a practical algorithm, the expectation operator
must be dispensed with, yielding approximate or instantaneous gradient methods. There is
also an important theoretical justificaton for doing this: V[ez(n)] is by definition an
unbiased estimate of VE[eZ(n)]. In the literature, these methods are often referred to as

stochastic gradient methods [Ha86,Sec 5.3). These algorithms thus have the form:
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B(n) = 8(n-1) - uV[em)] (3.2)

In order to implement (3.2), the gradient must be determined. The gradient will have a
different form depending on which system idenufication model is used (i.e. output error or

equation error). These two gradient expressions are now derived.

3.1.1 The Equation Error Stochastic Gradient Algorithm

To find V[eez(n)], the chain rule[F177, Sec.4.4] is first applied:

V[ccz(n)] = 2ee(n) V[ee(n)) (3.3)

Recall:

ee(n) =y(n) - y(n) = y(n) ~ 8T(n-1)@ce(n)
Taking derivatives with respect to the parameters, é(n—l), noting y(n) is independent of
8(n-1) and thus Vy(n)=0, the following expression for the gradient of ee(n) is obtained:
Vee(n) = —pee(n) (3.4)

Substituting (3.4) into (3.3) and then into (3.2) yields the following expression for the
equation error stochastic gradient algorithm. This algorithm is known as the LMS
algorithm, which was developed by Widrow and Hoff [Wi75], [Wi76], [Ha86,Ch35],
[Wi85,Ch6]:

B(n) = B(n-1) + pee(n)ee(n) (3.5)

Note the constant "2" has been absorbed into the stepsize, . Convergence requirements
for this algorithm are similar to those of the steepest descent method. In particular

[Ha86,Sec.5.12,prop.2], for mean-square convergence of the parameters. B(n-1):
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Where, as before, the A;'s are the eigenvalues of the correlation marrix, R.

The LMS algorithm is the most widely used adaptive algorithm because of its
computational simplicity. Furthermore, since it uses the mean-squared equation error, it
possesses the desirable characteristics of the equation error model discussed in Section 2,3
(i.e. unimodal error surface and no adaptive filter stability problems). Thus, even though
the equation error modes does not provide optimal MMSE and estimates of Bp, itis

dependable and does in fact perform satsfactorily in a wide variety of applications[Wi75].

3.1.2 The Qutput Error Stochastic Gradient Algorithm

Proceeding similarly as in the previous section, the gradient of 0e2(n) must be

determined. As before, the chain rule yields:

Voe(n) = 2oe(n) Voe(n)

The mawrix expression for the output error is:
oe(n) = y(n) - y(n) = y(n) - 8T (n-1)@ge(n)

As before, Vy(n)=0, so the expression for the gradient is:
Voe(n) = -V8T(n~1)¢e(n)

This gradient cannot be evaluated as simply as in (3.4) in the equation error case, because

the y terms in @, depend on the parameters, 8. Expanding the matrix notation yields:

—0T(5 1) Qge(n) = &) (n-D)y(n=1) + ++- + éﬁa(n—l)g'(n—ﬁa)

= by(n-1)x(n) - -+ - bg (n-D)x(n-fip)
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[n the following, the ume index. (n-1), associated with the adaptive filter parameters 3; and
Bi will be omiuted for convenience., The appropnate derivatives for the gradient vector must
now be taken, using the chain rule since y(n) is not a constant with respect to the
parameters [Jo84,Sec.lILA]:

BT e ~ -
-36 (Fm(n) =51M3 1) e ay(n )+ T ay(n‘ fiq)
o o3 'O T 4

"Z Jaya(n 1)+ S
s

4

=[Aa)- ]

0Tguem) _. 3y(n-1) . V(n-fy)

+ v(n—l) (3.6)

l

b, op g D
ay(n i)
= = X(n-)
jgf a3
=[A(g1)-1 ]y() x(n-i) (3.7)

From the expressions (3.6) and (3.7), it is seen that:

Voe(n) = -V8Tpy(n)
= ~oe(n) +

- . ~ T
[A(q-1)- 1][ay(n) Cymaym  dy(n) 6.8

dis, by  oba,

Since oe(n)=y\n)—§(n), Yoen )=—V§(n ), which is the negative of the vector in second term

on the right of (3.8). Using this fact, (3.8) can be rewritten as:
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Voe(n) = —pge(n) + [ 1-A(q~1)] Voe(n)
The above equation can be simplified as:
A(q1) Voe(n) = —oe(n)
Reintroducing the time index and solving for the gradient vector vields:
=1 s
Voe(n) = =< Qpe(n)? 3.9
= 5y e (3.9)

Define the vector:
‘P' (n) = ':_1""'_ Poeln)
o Aq-tin-1)

This yields the following expression for the stochastic gradient algorithm for the output

error adaptive system:

8(n) = 8(n-1) + ug_ (noe(n) (3.10)

It is important to note a significant differance between the output error algorithm of
(3.10) and the equation error algorithm of (3.5). The algorithm of (3.5) uses the equation
CITOT YEZYEsSOr VECIOr, Pqa(n), "as is,” whereas the algorithm of (3.10) requires the output
SITOr Tegressor vector, Pq.(n), to be filtered by the autoregressive polynomial of the
adaptive filter. This characteristic of regressor filtering is very common among algorithms
which have been developed for adaptive IIR filters [Jo84), [Fa86], [So88). Note that the
autoregressive filtering by A(q~!,n-1) in (3.10) is applied to a vecror. This implies that fi,

past values of @qe(n), which is a total of fiy(f,+i,+1) values, be retained in memory to

© This result can be amved at more sumply by considenng the output error expression (2 11): oe(n) = !

8(n-1 )9oetn)+v(n). Taking denvauves with respect to 8(n-1) yields Voeun )::—:-1—1- Poeln). Since A(q"l)
Al

()

1s unknown, the best that can be done 1s to use 1ts latest esumate A(q‘l ,n-l). This substitution yields
\3.7"). This 1s a common pracucal way of dealing with filtered quantities and will be used later.
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accomplish this operation. Assuming siowly time varving adaptive filter parameters, this

£ T S TN,

memory requirement can be reducea by implemenung the tiltering process in the following

approximate manner [Jo84,Sec.lI1.4], [So88.Remark 1] by defining the quantities:
. 1 -
F(n) = ————y(n
y (m) A(qLo1) y(m)

xF(n) = x(n)

A(q-!.n-1)
The following approximation can now be used in (3.10);

1

;\(Q"',n-—l) Poeln) = [§F(n-—l) §F(n_ﬁa) xF(n) -+ xF(n-—ﬁb)] T

Ziise asuaiars

This approximate filtered-regressor expression requires that only (fi,+iy,+1) values of y(n)

and x(n) be stored in memory.

As mentioned in Section 2.3, the possible multimodality of the MSOE surface is the
major drawback of the output error model, because this can cause (3.10) to stall in a local
minimum. This fact can be seen more precisely now in terms of the gradient vector. At

any local minimum point, the partial derivatives with respect to every variable are zero.

ey
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Thus ‘?}S[oez(n\] = () and it can be seen from (3.1) that é(n)=@(n—l). In other words,
gradient algonitans effectively “tumn off™ at local minima. Note that in addition 10 “turning
off* at local minima, gradient algorithms will "turn off" at local maxima and inflection
points as well. However, using the instantaneous gradient of (3.2) prevents the second
term of the algorithm from staying at 0. Therefore, at local maxima and inflection points,
the noisy gradient estimate will always perturb the parameter estimates, B, slightly past

these points, and the algorithm will continue “looking down™ until in reaches a minimum

point (global or local). The points of minimum MSE are referred to in literawre dealing
with convergence issues as stable [Mi82.Sec.5.3] convergence points of the gradient

dgonthm (3.1). When the practical stochastic gradient algorithm (3.10) yields parameter
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estimates near these points, they wiil oscillate obout them because of the noisy gradient

estimates instead of moving away as in the case of local maxima and inflection points.

3.2 Least Squares Methods

In the least squares (LS) scheme, it is desired to do more than merely move the
estimate, 6, in the direction of the minimum of the mean-square error surface. In
particular, the least squares estimate is the one which minimizes at every time instant, n, the

following criterion:
n
JLs(n) = ., e2(i) (3.11)
i=1

This can be explained more intuitively as follows [Ha86, Ch.7]. Given some plant
input/output sequence {x(i)}?=l, [y(i)]'i‘=l, and a consrant parameter estimate B(n), the
output sequence of the adaptive filter, {§(n))?=1, will produce the error sequence {y(i)-
§(i)}?=1. This error sequence will produce a corresponding value of J(n). The LS
estimate, éLs(n). is the one which, when held constant through the interval i=1, -+ ,n,
as above, yields the minimum value of J(n). The least squares method is seen to be a
deterministic method, in that no statistical assumptions or approximations have been made,
as in the gradient methods.¥ Minimization thus takes place assuming only the plant

input/ourput record from the initial time up to the current time.

Consider the minimization with respect to 8(n) of the criterion (3.11), repeated

here:

n n
* 1t should be noted here that mimmuzation of Zez(i) is equivalent to minimizing i-zez(i), which by the
i=1 i=1
wwe of :arge numbers approaches E[e’*\n)] as n-»e, Therefore, statistical methods based on the MSE

suriaue are asymptoucally equivalent to least squares methods. In other words, both types of algorithms
will converge to the same point.
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4
n
Iy =Y e(i)
i=1
The chain rule vields the derivative:
] dlps(m) & . defi)
g LS -2V eyl 3.12)
dé(n) E; ( dd(n) (

Setting this derivative to zero and solving for 8(n) yields the LS estimate based on n
observations, éLS(“)- To determine its value, the explicit expression for the error, e(i),
must be used. Thus in a similar fashion as in Section 3.1, both the equation error and

output error expressions will be utilized in (3.12) to derive adaptive algorithms for the

T
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equation error and output error adaptive systems,

3.2.1 The Equation Error Least Squares Algorithm

Using the matrix expression (2.3) for the output of the adaptive filter yields the

desired expression for the equation error at the ith iteration:

ee(i) = y(i) - y(i) = () - OT(n)pee(d)
As seen in Section 3.1.1, the derivative of this quantity is:

dee(i) = vTe

Nl (1
ah ) e(d) =~ (1)

Substituting these expressions into (3.12) and equating to zero yields the least squares

estimate of 8, based on n observations, BLs(n):

b=

[v0) - B @oetd oz, =0

-
1]
—

Solving for 8 g(n) vields:
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3 n n
L eEsm);(peeu)wfe(i)=i}_“_ly<i><p;(i> (3.13)
. n T Tla

1 9Ls(n)={2%e(i)cpw(i)J D V(D Peeld) (3.14)
3 i=1 i=1

Even though (3.14) is a valid expression for the LS estimate, note that it is not recursive,
that is, (3.14) does not express é[_s(n) in terms of only the data at the previous time

3 instant. In other words, it requires all the data from the starting time to the current time,

defining the term which is inverted in (3.14) as:

n
R(1) = ' PePrgi) = R(1=1} + Qe P () (3.15)
i=l

This definition used in (3.13) and transposing yields:
. n
R(m)BLs(n) = 3 y()Pee) (3.16)
i=1

The summation above can be expanded to give:
. n-1
RMBLs(M) = 2 y([)Peed) + ¥(n)Pee(n)
i=1
Applying (3.16) to the first term on the right above yields:
R()Bs(n) = R(n-1)B 5(n=1) + v(n)@ee(n)

Now solving (3.15) for R(n-1) and substituting in the atove expression yields:

R(m)Bp s(n) = [R(n)—wee(n)cp;‘;(n)]él_s(n—n + Y(0)Pge)

115




= RmBysin~1) + wee(n)f or (WL stn-Dyin) |

error, e*(n), gives the desired resuit:

Brs(n) = B 5(n-1) + R-I(n)@eqe(n)ee(n) 3.17)

The equations (3.17) and (3.15) constitute a recursive version of (3.14). However, notice

l Finally, premultiplying by R-1(n) and recognizing that the term in brackets is the equation
that the marrix R(n) must be inverted at each iteration, which is very time consuming. This

problem can be alleviated by defining the matrix:

L§| _P(n) =R-!(n)

The matrix inversion lemma can be used here to establish the following recursion to update

P(n) (Lj83,p.19]:

P(n-1)9ec(n)@p(IP(n-1)

P(n) = P(n-1) - (3.18)

1+l (P(n-1)Pee(n)
This expression allows the inverted matrix, R~!(n), to be updated direcy, rather than first
calculating R(n) using (3.15) and then performing the matrix inversion. Note that (3.18)
eliminates the need for matrix inversion altogether, as it requires only a single scalar
division. The expressions (3.18) and (3.17) with R-!(n)=P(n) constitute what is known

as the recursive least squares (RLS) algorithm.

Weighted Recursive Least Squares (WRLS)

In applications, it is often desirable to assign weights to the individual cbservations
of the least squares parameter esumanon problem. Weighting an observation can indicate
>Ome measure of its importance, accuracy, or relevence in determining the new parameter

esumate, 8(n). The parucular choice of weighting assignments depends on the application.

LAY SRASRAD). EETE b UV s TV LAy L, o Attt by Sl P s Iy P v rayaea A P e
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and can have either a heuristic or analytic basis. The criterion funcdon (3.11), modified to

reflect weighted observations. is now:

n
Jyis(n) = 2 ouieel() (3.19)
i=1

where (o)}, is the sequerce of observation weighs.

Carrying through the procedure of minimization of (3.19), and generating a
recursive formulation as done previously yields the following modified least squares

algorithm, commonly known as weighted least squares (WLS):
8(n) = B(n-1) + oUn)P(n)@ee(n)eetn)

a(n)P(n-—l)cpee(n)(p;(n)P(n—l.)

P(n) =P(n-1) - T
L+a(@)Q (VPO-1)Pee(n)

Recursive Least Squares with Forgerting Factor (RLSFF)

A par... lar weighting scheme which assigns progressively lower weights to past
observations is useful in dealing with time varying systems. This gives the least squares
algonithm the characteristic of "forgetting" data from the distant past which may not be
relavent in determining the current "optimal" value of the parameter estimates. Note that in
this scheme, a given observation will be systematically be assigned smaller and smaller
weights as the time index, n, increases. This is in contrast to WRLS, which assigns a
constant weight to each observadon. The criterion function for this weighting scheme is

thus [Lj83.Sec.2.6.2}:

n
JRLSFR®M) = 2. B(,n)ee(i) (3.20)

i=1
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where the weighting sequence, { B(i,n )}';1, is increasing in the variable i and decreasing in

the variable n. A tvpical choice for this weighting sequence is:

R i

B(i,n) = AR-i

where A, called the forgerting factor, is constant, and 0<A<1. This choice of B(i,n) is seen
to yield an exponential forgetting characteristic when considered as a function of the time
variable, n. A forgetting factor, A, yields an algorithm with an effective "memory" of the

past 1/(1~A) observations [Sh89].

Allowing the RLS algorithm to “forget" past observations in this manner produces
an increase in the "bouncing around" of the estimates, 8(n), about their target values in the
steady state, resulting in a higher value of MMSE. This is because useful past data is
effectively "thrown out," leaving the algorithm more suéécptiblc to the noise contribution in

fewer observations. This characteristic illustrates a general tradeoff which exists in most

adaptive algorithms between tracking ability and MMSE.

As before, carrying through the minimization of (3.20) and derivation of a recursive

algorithm yields the following algorithm, known as recursive least squares with forgerting

facror (RLSFF):
B(n) = B(n-1) + P(n)Qee(n)ee(n)

P(n-1)9ee(n)pg(n)P(n~1)
P(n) = P(n-1) -

1
A A+am)o (n)P(n~1)pee(n)

Weighted Recursive Least Squares with Forgening Facror (WRLSFF)

The three previously presented least squares algorithms can be lumped into one
agonthm by employing both weighting schemes simultaneously. This aigorithm is called

weighted recursive least squares with forgerting factor (WRLSFF):
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8(n) = 8(n-1) + an)P(n)Pee(n)ee(n) (3.21a)
n () P(n—1)Pee(0) 0 (1) P(~1)
P(n) =—~| P(n-1) - T (3.21b)
A A+0(n) P, (MP(n—1)Peeln)

This algorithm obviously includes RLS, WRLS, and RLSFF as special cases with
appropriate choices for a(n) and A.

As a computational issue. note that all the least squares algorithms given previously
require that P(n—1)@.4(n) be evaluated to determine P(n) and then subsequently evaluating
P(n)¢es(n) to update 8(n). This latter matrix multiplication can be avoided by manipulating
the P(n) update equation (3.21b) by postmultiplying both sides by ¢,.(n) and expressing

the term in brackets over a common denominator:

P(n)es(n) =3 [AP(-1)0ee(e)
+0()P(1-1) e ()P, ()P(N=1)Pee(n)
-a(n)P(n—l)cpee(n)cp;(nwm—l)cpee(n)]/(m(n)w;(nwm-l)cpee(n))

- P(n-1)@ge(n)
M) @ (DP(-1)Pee(n)

Using this relationship, the least squares recursion of (3.21) can be implemented in the

following four-step procedure:

1) Calculate M(n) = P(n~1)Peq(n) (3.22a)

o(n)M(n)
A+on)g L (m)M(m)

2) Calculate L(n)= (3.22b)
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3 B(n) =8m-D + L(n)ee(n) (3.22¢)
4 Pm@)=— [P(n-1) - Ln)MT(n)] (3.22d)
A

3.2.2 The Output Error Least Squares Algorithm (RPE)

Unfortunately, analytic minimization of the criterion (3.11) when e(n)=oe(n) turns
out to be impossible for a recursive algorithm. This is because of the highly nonlinear
relationship between the parameter estimates, 8, and the corresponding adaptive filter
output, y(n)=8T@ce(n), The difficulty lies in the problem of solving (3.12) set equal to
Zero f;;hc least squares estimate, By ¢(n). Recall for the equation error case, e(i) is linear
in 8 and thus de(i)/d is constant. This gives rise to the estimate 8; 5(n), which is the
solution to a linear (matrix) equation. The nonlinear equation resulting when using the
output error model cannot be sclved so simply. Instead, numerical methods must be
utilized to minimize (3.11). This procedure usually requires several evaluations of (3.11)

which uses all of the data since the initial time, n=1. Therefore, a recursive algorithm

based on this type of minimization is not possible.

It is thus necessary to introduce approximations in the quest for a recursive
algorithm in order to atterapt to minimize (3.11). A very general method is presented in
[Lj83,Sec.3.7.2], which accomodates a plant having the structure of an extended form of
the Box-Jenkins model, which was briefly mentoned in Chapter 1. Algorithms such as
this which can approximately minimize the least squares criterion for plar.t structures that

are more complicated than ARX are known as recursive predicrion error (RPE) methods.

The problem at hand is to munimize (3.11) using the output error. oe(n), as the error
term, etn). The output error should be thought of here more generally as the error between

an adaptive filter and a plant having the ARMAX structure of Figure 2.1. Notice tait no
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mention has been made here of the structure of the adaptive filter. This is because the
general RPE method specifies the structure of the oprimal adaptve filter based on the plant
structure. It turns out that the ARX adaptive filter of the output error adaptive system,
shown in Figure 2.3, is the optimal adaptive filter structure for use with given ARMAX
plant structure. This should not be surprising, given the investgaton and discussion of

the properties of the output error model given in Chapter 2 (i.e. unbiased estimates and

minimum possible MMSE of o%,).

The RPE algorithm is now shown here in the context of the output error adaptive

system of Figure 2.3:

8(n) = B(n-1) + P(n)y(n)oe(n) (3.23a)

- T(n)P(fi—
P(n)=_;:{l,(n_l)_a(n)?(n Dy@yTm)P( 1)]

3.23b
A+yT(n)P(n-1)y(n) . (3.23b)

where
Y(n) =-Voe(n) = ;@;%;_—1—) Poe(n)

The forgetting factor, A, and observation weighting coefficient, a(n), have also been
included here and serve the same purpose as in WRLSFF. Note the striking similarity
between the RPE algorithm and WRLSFF. In fact, the RPE algorithm reduces to
WRLSFF when the equation error quantities, ee(n) and @,.(n), are used in place of the
correspording output error quantities, oe(n) and @y(n). Also note that (3.23a) reduces to
the gradient methods of (3.5) and (3.10) for the equation error and output error cases,
respectively, when P(n)=pl. These are some .amples of the generality and wide
applicablilty of the RPE algorithm. It should also be noted that (3.22) can obviously be

used to implement the recursion (3.23) with the appropriate changes of the notaton.
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3.3 The Method of Optimal Bounding Ellipsoids (OBE)

Recently, a system identification technique providing an alternative to least squares
equation error minimization has been proposed [Fo82], [Da87]. In these papers,
algorithms were developed which perform optimization based on geometric considerations
rather than the analytic minimization of (3.11)., What sets these algorithms apart from least
squares methods is the manner in which the contribution to the plant output of the noise is
characterized. Instead of imposing some statistical assumptions on the noise (i.e. white
noise), as has been the case thus far, these algorithms were developed assuming that the
noise contribution in the plant description has a magnitude bound, ¥, at every time instant,
n. This key assumption gives rise to an algorithm having the ability to decide very quickly
whether the current data observation, (..(n), yields any additional information which could
improve upon the previous estimate, 8(n—1). If it is determined that @ee(n) contains no
new information, updating (a computationally expensive operation) need not occur. In
other words, this algorithm possesses the very attractive characteristic of selective
updating. This feature has been seen in simulations to reduce the amount of computation

considerably, as the algorithm tends to use less than twenty percent of the input data

[Hu86].

The geometric criterion used in the OBE algorithms is described using the concept
of a membership set. A membership set is the set of points in the parameter space which
are consistant with the data observations, assumed plant structure, and the noise bound.
Initially, the membership set is the set of all points in the (i, +fi,+1)-dimensional parameter
space. Practically, however, it is chosen to be a very large (fi,+fiy+1)-dimensional
ellipsoid which must include all possible valid parameter values of the plant. Starting with

this initial ellipsoid, the following algorithm is then implemented:
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1) A check is made of each subsequent data observation to determine if the
"size" of the previous ellipsoid can be reduced by utilizing the current data

(regressor vector), Qge(n).t
2a)  If 50, a new, smaller ellipsoid is then determined by the algorithm.

2b)  If not, the current data is discarded, the previous ellipsoid is kept as the
current ellipsoid, the next data observation is brought in, and the process is

repcated by returning to step 1),

At each iteration, k, the corresponding parameter estimate, 8(k), is taken to be the center of

the ellipsoid generated so far from the current and previous iterations, i=1,-+- k.

The algorithm derived in [Da87] using 02(n) as an optimization parameter, has a
very familiar form. In faet, it is identical to WRLSFF of (3.21) with a data-dependent
scheme of generating the weighting coefficients, a(n). A time-varying forgetting factor,
A(n), is also employed, and is related to the weighting coefficient by:

A(n) =1-~-a(n)

Define the following quantities, as in [Da87]:

G(n) = Qop(m)P(n-1)pee(n)

ee?'n)

Bn) =

€ € (0,1), a design parameter

The OBE algorithm is now presented:

Vanous measures of the "size” of the ellipsord have been employed. In [Fu82], the size was defined in
(wO ways, each vieiding a shightly different algonthm. The two measures of >ize were 1) the volume of the
cllipsoid, and 2) the sum of the semi-axes of the ellipsord. In [Da87), a more abstract minimization
.nterion, 6=(n) (note this has nothung to do with noise vanance), was used. This was seen to yield a
simpler algonthm which 1s essennally an implementation of WRLSFEF, as will be seen.
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while (not done) do begin

ey

get the current data vector, @..(n)

&
N:
.:
h

*

L«

if Y2 2 02(n~1) + ee2(n) then begin {no update needed)
a2(n) = 62(n-1)
8(n) = 8(n-1)

end

else begin {determine the weighting coefficients, a(n), the new value of

62(n), and update with WRLSFF)

1 G(n) . _
V(n): 1-G(n) {1 V 1+B(“)[G(D)-—1] }’lf B(n)[G(n) 11+1>0
(- if B(n)[G(n)-1]+1<0

a(n) = min(,v(n))

a(n)[1-o(n)]ee(n)
1-ci(n) + a(n)G(n)

o3(n) = [1-a(n)lo?(n-1) + an)y? -

implement (3.21) with A(n) = 1 - at(n)

end (if}

end {while }

In summary, the OBE algorithm possesses two key properties which could be very

desirable in applicadons. They are:

1) The bounded noise assumption. Most algorithms employ statistical

assumptions to characterize the noise contribution in the plant output (i.e.
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white noise). In practice. however. satisfaction of these assumptions are

both difficult to guarantee and verity. In practice, it is usually much easier

to obtain a magniwde bound on the output noise.

2) The selective updating strategy. This frees the algorithm for about 70-80%
of the total running time, which opens up (largely unexplored) possibilities

for time-sharing the algorithm with muitiple processes.

3.4 The Steiglitz-McBride Method (SMM)

As mentioned at the beginning of this chapter, both the gradient and least squares
algorithins implement the process of "looking down" the MSE surface. In Section 2.3.2, it
was described how local minima in the MSE surface of the output error adaptive system
could cause this type of algorithm to fail. It is therefore of interest to examine altemative
methods of system identification which do not require unimodality if the output error

surface for convergence of the adaptive filter parameter estimates, 6, to the piant

parameters, 6y,

An adaptive algorithm was developed recently by Fan [Fa86] which minimizes a
criterion first considered by Steiglitz and McBride. For sufficient order adaptive systems
(i.e. iy2n, and fiy2ny,), the SMM criterion has a unimodal character containing a global
minimum which coincides with the global minimum of the MSOE surface. Simulation
studies have also shown this to be true in some reduced order cases (i.e. fi,<n, or fiy<ny).
Reduced order adaptive systems are of extreme interest, since in most practical situations,
the plant order, n,, is unknown.” Furthermore, in many cases, the plant may not even be

of the form B(q-!) / A(q~!) as has been assumed throughout this thesis. In this case, an

~ In fact, reduced order systems can cause the existence of local minima in the MSOE curtace. Cases have
been documented [St181] of adapuve systems, possessing unumodal MSOE surfaces with a sufficient order
adapave tilter, having muinmodal MSOE surfaces when the sufficient order adaptive filter is replaced with
one of reduced order.
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adaptive filter of sufficient order would need an 1nrinite-dimensional parameter vector, 8

(i.e. fiy—»eo and/or fiy—res). Thus acceptable (hopefully optimal in some sense) reduced

order performance is an important feature for any practical adaptive system to have,

The SMM scheme is presented here as follows. Consider the ARMAX plant of
Figure 2.1, described by the relationship:

A(g)y(m) = B(q)x(n) + A(g!v(n)

If the quantities x(n), y(n), and v(n) are autoregressively filtered by the A(q-l)

polynomial, the above relatonship can be expressed as:

A(q)y'®) = B(q)x'®) + vin) (3.24)
where

vy

y'(n) = A y(n)

Ve = oL

x'(n) A(q-l) x(n)

In what follows, it will be seen that minimization of the eqation error of the
“primed" adaptive system having the plant described by (3.24) will be the goal of the SMM
algorithms. This is the essence of the SMM approach. Minimization will be accomplished

using both the gradient and least squares techniques.

3.4.1 Gradient Minimization

Observe that (3.24) describes an ARX plant with input x'(n) and cutput y'(n). As
mentioned in Section 2.3.1, the equanon error adapuve system will simultaneously provide
minimum MSE of 0’3 and unbiased estimates for ARX plant structures. Therefore, one

might expect the algorithms presented thus far for equation error systems to perform

! g g ‘ x " Keviy Liaaiad 2 S M NN O i sy P L - A S S R NI . -
L2 SRV IR O RS LG R R 4/ LS O A S S A s (RO L s D 180 AR W LD e Y s PN TR S AR TN TRy * (53 g 5 e > s e, TG T v - w
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optimally for the "primed" equation error adaptive system having a plant described by

(3.24), with input x'(n) and output v'(n). In particular, applying the LMS algorithm of

(3.5) yields:
B(n) = 8(n~1) + nogppm(n)ee'(n) (3.25)
where
Psvp(® = [~y'(n=1) -+ —y'(n-ng) x'(m) -+ X'(n-np)] "
= X(T:T)’ 9ecl) = 9, ()

and ee'(n) is the equation error of the adaptive system having the ARX plant described by

(3.24).

The relationship between ee(n) and ee'(n) will be needed later. It can be derived

simply as follows: From (2.19) applied to the ARX system of (3.24), it is seen that

ee’(n) = 8To, () +v(n) (3.26)

The expression for the equation error was given in (2.7) as:

ee(n) = 8Tee(n) + A(q™!)v(n) (3.27)

Autoregressively filtering each term of (3.27) by A(q*‘) yields:

ee(n) = 8T, (n) + v(n) (3.28)

1
A(g)

Thus it is seen from (3.26) and (3.28) that:

ee'(n) = ee(n) (3.29)

1
Ala)
This relationship should have been expected, since the "prime" has denoted here an

autoregressive filtering by A(a-1).
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Note that generating the filtered regressor. (p.ee(n ), requires knowiedge of the A(q-l)
polynomial, which is not known. As mentioned in the footnote of section 3.1.2 regarding
the generation of an expression for Voe(n), the most recent estimate of A(q-l), which is
f-\(q-l,n—l), can be used to (approximar ) implement the filtering operation. Thus the

following approximation is made, yielding the "IF" algorithms of [Fa86]:
' 1 1
n) = ——— Qpa(Nl) = = Pee(n 3.30

This filtering operation can be further simplified, as was also shown in Section 3.1.2, by

defining the filtered quantities:

Fln) o b
—y () Jx(q-l,n-l) y(n)

A( -1) o))

Therefore a simpler approximation to (p;e(n) is:

P = [yF(n=1) +++ yF(n=iiy) xF(n) -+ xF(n-fip)] T (3.31)

This approximation yields the simpler non-"IF" algorithms in [Fa86].

In addition 1o making the regressor filtering realizable, a very interesting
relationship results from using f\(q“,n—-l) for the filtering operation. The relationship
(3.29) is now modified to:

1 1

() A(gla-l)

In light of the approximate equivalence between ee’(n) and oe(n) in (3.32) as the AR

ee'(n) = ee(n) = oe(n) (3.32)

adaptive filter parameters converge to those of the plant, it has been shown [Fa86] that the
LMS-type algonthm of (3.25), xhrough minimizaton of the "primed" adaptive system

equation error, ee'(n), will approximately minimize the output error of the original
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ARMAX adaptive system of Figure 2.3, thus providing unbiased estimates. Also, in order

to generate a realizable algorithm, (3.32) can be applied to (3.25), yielding the output error

algorithm given in [Fa86]:
B(n) = B(n-1) + po, m)oe(n) (3.33)

As previously ment:oned, (3.30) or (3.31) can be used to approximately determine cp;e(n),

yielding the "IF" and non-"IF" algorithms, respectively, in (Fa86].

3.4.2 Least Squares Minimization

It is also natural to consider a least squares minimization of the equation error of the
“primed" adaptive system in addition to gradient minimization. This is accomplished

straightforwardly by recalling the least-squares criterion introduced in Sectdon 3.2:
n
Tes(n) =Y, e2(i)
i=1

For the current problem, e(i)=ee'(i), yielding the following criterion for the "primed"

equation error system:

n
Tes(m = ee'2(i) (3.34)

i=l

Recall that the sequence of error values, {ee'(i) } ?:1’ is obtained by holding the parameters
of the adaptive filter constant in the interval i=1, -+ - ,n, these parameters being denoted as
6(n). Applying the equation error relation (2.8) to the primed system thus expands (3.34)

to:

' n - - 2
5= X[ L)y @ - Bt )]
i=
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Finally, again recail the process of implementing filtered quantties - the last available
estimates are used to filter the desired signal. Thus, substituting for the signals x'(i) and
V'(i) their actual realizations vields the desired least squares criterion for the "primed"

adaptive system:

n
TR W BV v Ao x P
JLs(n)—g[A(q l’"):x(q—l,i_1) B(a-hn )z ] (3.35)

This is the general form of the SMM criterion [Fa89], which has been seen to exhibit a
unimodal characteristic even when the original output error least squares criterion, Zoe2(n),

(or equivalently the MSOE surtace) is multimodal.

It is interesting to consider the criterion (3.35) as the estimates converge to the true

plant parameters. In this case, most of the polynomials B

A(q-'.i) and B(q-L1)
for i=1, -+, n, will be approximately equal. Therefore, upon convergence to the plant

parameters, the criterion will approach the following expression:

' i Be)) T
JLS(n)~i=1 y(n) - Al x(n)

The term in brackets is now seen to be the output error, oe(n). Thus it is seen that

if the plant parameters do in fact minimize Jpg(n), minimization of this criterion is then
equivalent to output error minimization. This has been proved for the case of a sufficient

order adaptive system having white output noise, v(n) [Stc81].

Returning to the original SMM criterion of (3.35), it can be seen that minimization
of J; ¢(n) is exactly the same as least squares minimization on the "primed” adaptive
system, 1.e., considering the signals x'(n) and y'(n) as the input and cutput signals to an

ARX plant. Also in light of the equivalence between JLS(“) and Jj g(n) as 8¢ n)—8p, it has
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been shown that the output error, oe(n), can be utlized in place of ee'(n), similar to the

gradient case. Theretore, the SMM algorithm is the following modified version of RLS:

8(n) = 6(n-1) + R-1g, (noe(n)
R(n) = R(a-1) + @, (). (n)

The above algorithm will be referred to as SMM(RLS), since it uses the recursive least
squares algorithm in the context of the "primed" adaptive system of the SMM approach.
Note that the data weighting and forgetting factor techniques discussed in Section 3.2.1 can
also be utilized to implement the SMM approach. In the following chapter, the behavior of
one of these standard SMM algorithms, SMM(RLSFF), will be observed through

computer simulations and compared with a new SMM-type algorithm.
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CHAPTER 4

SOME NEW OUTPUT ERROR ADAPTIVE ALGORITHMS

4.1 Use of OBE in the Output Error Adaptive System

Until now, the OBE algorithms have not been implemented in an output error
adaptive system for identification of the ARMAX plant of Figure 2.1. One of the OBE
algorithms has been extended [Rao89, Ch.3], however, in a manner similar to the extended
least squares (ELS) scheme [Lj83, Sec 2.5.1], which permits identification of a general
ARMAX plant (EOBE). Though this is an important result in its own right, it places
restriciions on the c; coefficients of the plant to ensure proper convergence of the adaptive
filter parameters. This limits the plants to which this technique can be applied since, in
general, there is no control over the plant parameters. For the current ARMAX system
identification problem, it was shown in Chapter 2 that ¢;=a;, for i=0, +-+,n, (ag=1). It will
be shown here that this ARMAX case can altemnatively be dealt with by considering the

output error adaptive system.

To understand the reason why OBE cannot be directly applied to the output error

adaptive 3ystem, consider the expression for the output, y(n), of the plant, given as:
n n 0
y(n) = —zaiy(n—i) + ibix(n-i) + zaiv(n—i)
i=1 i=0 i=0

Recall the key assumpuon of the OBE algorithm: The contribution of the noise to the plant

output must be bounded. In practice, the quantity which is most realistically bounded is the
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output noise term, v(n). However. knowiedge of a magnitude bound on v(n) is not
equivalent to knowing a bound on the total noise contribution to v(n). This is because the
noise contribution is actually an FIR filtered version of v(n), with the filter being the
unknown autoregressive plant polynomial, A(q“l). Since the noise bound depends on the
unknown plant parameters, applying OBE in this situation is not a well-posed problem.
This is one of the reasons why for a proper operation of OBE on this system, some

restrictions must be placed on the a; coefficients to ensure that the total noise term satisfies a

bound when v(n) itself is bounded [Rao89, Sec.3.3].

4.1.1 Presentation of the Algorithm

As an alternative to the general ARMAX identification scheme of EOBE, again

consider the plant description, given in operator notation:

A(g!)y(m) = B(q")x(m) + A(q!)v(n)

Autoregressively filtering each quantity by A(q“), exactly as done in Section 3.4, yields
an SMM-type approach to identification cf the plant:

A(q-l)y'(m) = B(q!)x'(n) + v(n) (4.1)

It is important to see here that now v(n) appears “as is" in the alternative plant description
(4.1), and thus the bounded noise assumption is directly satisfied without requiring any
restrictions on the plant. Furthermore, note that (4.1) describes an ARX system with input
x'(n) and output y'(n), which is the structure needed to utilize OBE. Also, recall (Section
3.4, Eq.(3.32)) the approximate equivalence of the error in equation error adaptive system
using (4.1) as the plant description and the error of the output error adaptive system having

the original ARMAX plant.
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Therefore, using OBE to 1dentify the original ARMAX plant is equivalent to
applying the algorithm to the "primed" ARX system of (4.1). This will require two

modifications to the original algorithm:

1) The signals x'(n) and y'(n) must be used as the input and output quantities
in the regressor vector. In other words, (p;e(n) must be used in place of
@eeln) in the standard OBE algorithm. Two methods of generating w;c(n)
were given in Section 3.4, Egs. (3.30) and (3.31).

2) The output error, oe(n), of the adaptive system having the original ARMAX
plant must be used in place of ee(n) in the original OBE algorithm. This is
possible in light of the approximate equivalence between the equation error

of the "primed" system, ee'(n), and the output error, oe(n).
This algorithm will be referred to as SMM(OBE).

As a test of this algorithm, simulations were performed for three cases considered
in [Fa86], where the authors' algorithm (3.33) was shown to converge to unbiased

estimates of the plant:

Case 1) Sufficient order adaptive filter, unimodal performance surface.

For this case the output error adaptive system is described by:

B(q™!) _ !
A(g!) 1-1.2q-1+0.6q2

B(q-1.n) ) bo(n)
Aq-l,n) 1-8)(n)q-1-An(n)g-2

A umformly distmbuted, zero mean. unit variance, white sequence was used as the input,

xtn). It was shown in [Str81] that the error surface of this adaptive system is unimodal.

134




T T T R T T T T T

pecnaes 1

64

Case 2) Sufficient order adaptive filter, multimodal performance

surface.

A multimodal error surface was constructed in [So075], using the following adaptive

system:

B@) __ 1 1
Al (107q1)? 1-L4q1+0.49q72

Blaln) Byt
A(g-ln) 1-4)(n)q!-Aa(n)g?

The input sequence, x(n), was a correlated sequence, obtained by passing uniformly

distributed, zero mean, unit variance, white noise through the following filter:

(1-0.7g-1)%(1+0.7q-1)? = 1 - 0.98q"2 + 0.2401~

Case 3) Reduced order adaptive filter, multimodal performance

surface.

The multimodal reduced order adaptive system examined here was introduced in

[Jo77). It is described by:

B(q~) ___ 0.05-04q-"!
A(q!)  1-1.1314q7140.25¢-2

ﬁ(q—l,n)___ Bo(n)
A(q-l,n) 1-dy(n)q!

As in case 1), the input , x(n), was a uniformly distributed, zero mean, unit variance, white

sequence.
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In all the simulation cases. the output noise, v(n), was a uniformly distributed, zero
mean white sequence independent of the white sequence generating the input, x(n). It
should also be noted here that stability projection (see Section 2.3.3) was used, because of
the IIR structure of the adaptive filter. The simulations were run with the following

questions in mind: 1) Is this algorithm a viable alternative to output error adaptive system

F3d « i yer

identification? More simply put, does this algorithm work at all? 2) If the answer to 1) is

A 0

affirmative, then how does SMM(OBE) compare to the "standard" SMM algorithms
[So88], which use equation-error minimization algorithms such as LMS [Fa86], or RLS.

This latter algorithm will be denoted as SMM(RLS).

__A partial answer to gquestion (1) was obtained by running the simulations and
checking for global convergence. To illustrate proper operation of SMM(OBE),
simulations were run and the behavior of the parameter estimates was observed. For the
sufficient order cases 1) and 2), recall from Section 2.3.1 that MMSOE=03 and the
parameters which yield this MMSOE are precisely those of the plant, Gp. On the other

hand, in the reduced order adaptive system of case 3), there is no "true" parameter vector

pect- ey

that the adaptive filter can take on that will match the plant exactly, since 6 and Bp have

different dimensions. The resulting MSOE surface for this adaptive system will thus have

a minimum point which is greater than c::‘,, due to the irability of the adaptive filter to
"match" the plant. The disparity between the minimum MSOE achievable with a sufficient
order adaptive filter and that achieved by a reduced order adaptive filter is caused by what is
known as model mismaich. In other words, the¢ minimum MSOE of a reduced order

adaptive system can be thought of as being separated into two componets as follows:

MMSOE = MMSOE, + MMSOE

where MMSOE, is the minimum mean souare output error due to the output noise, v(n),

obtained by considering the adapuve filter to be of sufficient order. Again recall from
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Section 2.3.1 that MMSOE‘,:oi. The term MMSOE;; is the minimum mean square
output error due to the model mismatch, which is obtained by taking v(n)=0 and generating
the resulting MSOE surface. This was done in [Jo77] for the simulation case 3), where it

was shown that MMSOE,,=0.2066, occurring for the adaptive filter parameters of:
8 =8 bo]" =(-0.906 -0.311T

Recall for simulation cases 2) and 3), the MSOE surfaces are muitimodai [Fa86].
Therefore, to illustrate global convergence in these situations, initial estimates, 8(0), were
provided which were very close to a local minimum of the MSOE surface. The parameter
trajectories of the adaptive filter were then observed to see if the parameters were adapted
such that they moved away from the parameter yielding the local minimum MSOE to the
one yielding the global minimum MSOE. The trajectories obtained for cases 1)-3) are
shown in Figure 4.1 for a simulation run of 1000 iterations, which was well after
convergence.? Shown is the initial parameter estimate, @(0), the final estimate, 6(1000),
and the theoretical parameter estimate, 8, yielding the MMSOE. In the simulation cases 2)
and 3), the parameter estimates are seen to be adapted away from the parameter yielding a

local minimum MSOE towards the one yielding the global minimum MSOE.

* Convergence was determined by viewing the learning curve, to be discussed in Sectiond4 12
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Figure 4.1a Simmlation case 1) trajectories
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Figure 4.1b $imulation case 2) trajectories
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Figure 4.1c Simuiation case 3) trajectories

A remark is in order regarding the trajectories shown in Figure 4.1, Note that the
trajectories given for cases 1) and 2) are a plot of @, versus &;. The reason for considering
only the AR parameters as opposed to the X parameter 50 is that in the sufficient order
case, the MSOE surface of an output error adaptive system is quadratic in the X
parameters, and the X parameter estimate which minimizes the MSOE is in fact the true
parameter, 50. Thus there is no problem obtaining unbiased estimates for these parameters
because there are no local minima with respect to them, as might happen with the AR
parameter estimates. However, this is not true in reduced order adaptive systems.
Therefore, in the reduced order case 3), the plot of 3, versus by is considered. This is
because the MSOE surface is a highly nonlinear function of borh the AR and X

coefficients,” and thus 1n addition to the behavior of the a; parameter. the behavior of the

* See (Jo77] or (Sh89} For the explicit expression for the MSOE 1, -urtace. i.c., the expression of MSOE
in terms of by and 3, with v(n)=0.
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estimate by needs to be observed for proper convergence to the parameter yielding

MMSOE.

Thus from the results shown in Figure 4.1, it appears that the answer to question
(1) above is "yes," i.e., SMM(OBE) did in fact identify the parameters of an ARMAX plant
in the output error adaptive system configuration for the simulation cases 1)-3). Next,
attention is given to the more interesting (and more difficult) question (2), which is the

subject of the next section.

4.1.2 Performance of SMM(OBE) versus SMM(RLSFF)

“Depending on the application, the environment in which an adaptive system is
operating could have either a large or small noise content. It is therefore of general interest
to examine the performance of adaptive algorithms operating on systems with varying
levels of noise. Furthermore, the examination of performance with respect to different
noise levels can also serve as a basis of comparison between different algorithms. Of

particular interest here is an investigation of the performance of a "standard" SMM

algorithm, SMM(RLSFF), with respect to the new SMM algorithm, SMM(OBE).

"To compare the two algorithms in this manner, simulations were performed on the

simulation cases 1)-3) for varying signal-to-noise ratios (SNR's). The SNR is defined as:

Usually (as will be the case in this discussion), this quantity is given in decibels (dB),

converting the above expression to:
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SNR(dB) = 10log
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The SNR was varied from -10 to 10 dB, in steps of 2 dB, which was accomplished by
appropriately scaling the uniform output noise, v(n), with respect to the input signal. The
algorithm SMM(RLSFF) was implemented with 2 forgetting factor, A, of 0.99. At each
value of the SNR, SMM(RLSFF) and SMM(OBE) were compared with respect to two
criterion:

1) The minimum value of MSOE which was achieved (MMSOE).

2) Transient MSOE be:havior.

Both criteria were evaluated through the consideration of the adaptive system /earning
curve, which is a plot of the MSOE versus n, the number of iterations. Initially, at the start
of adaptation, the MSOE is usually high, since the initial adaptive filter parameters, 8(0),
are probably much different than the true plant parameters, 6. As adaptation proceeds, the
estimates, H(n), generally adapt so as to get closer to 6. This process yields a
monotonically decreasing sequence of MSOE values as a function of the time index, n. For
an algorithm which does in fact converge, this sequence will approach some constant

minimum value as n gets large (i.e. the MMSOE)t

Note that the characteristics described above for the learning curve apply to the
curve E[oe2(n)] versus n. To determine this curve experimentally would require taking an
ensemble average of an infinite number of independent realizations of oe2(n) versus n.
Obviously this is not possible. However, averaging a relatively small number of the curves

oe(n) versus n provides a very good indication of MSOE performance, even though these

© For thus to be true, the common assumpuon made here (and throughout this discusston) is that the plant
is fixed and that the input and noise sequences, x(n) and v(n), are stationary.
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curves may not have the precise monotone charactenistics of the actual learning curve. In

ey

fact. there will be considerable fluctuation in these curves. as will be seen.

With these properties of the learning curve in mind, the two performance criteria are

now considered for SMM(RIL.SFF) and SMM(OBE).

MMSOE

T —
o N

After viewing the learning curve resulting from each simulation case at every SNR

using both algorithms, it appeared that all of the curves reached their minimum, steady-state

U

levels well before 1000 iteradons. See Figure 4.2 for a typical example of this wransient

behavior for both SMM(RLSFF) and SMM(OBE). The quantity used as an approximation

T

to the MMSOE was a time average of the last 50 values.of the experimental learning curve.
This value will be called the steady-state MSE (SSMSE). To compare the two algorithms
with respect to this quantity, the SSMSE was plotted as a function of the SNR. These

T B

plots are shown for each of the simulation cases in Figures 4.3a, 4.4a, and 4.5a. Observe

R

that the curves have an exponential characteristic. To see why this is so, recall from

Sectdon 2.3.1 that the minimum value of MSOE is 0'3, occurring when é=9p. Therefore,

T

the experimental curves should approximate a curve of 0"2, versus SNR. But rccall that the

SNR is related to 03 as follows:

0,2

X
SNR(dB) = 10log—

o

mrp o
~
Q

Solving for o~ ields:

0_ -c‘al g[-SNR(dBYI
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where the function alog is the inverse of the (base 10) log function. It is thus seen that the
theoretical MMSOE versus SNR curve has the above exponential form. The theoretical

curves are given in Figure 4.3b, 4.4b. and 4.5b for each simulation case.
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Figure 4.2a Simulation case 1) learning curve for SMM(RLSFF). SNR=-10dB
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Figure 4.2b Simulation case 1) learning curve for SMM(OBE). SNR=-10dB
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Upon viewing the experimental curves of Figures 4.3a-4.5a, it can be seen that
SMM(OBE) performs very comparably to SMM(RLSFF). Also note that the experimental
curves are very close to their theoretical lower bounds of MMSOE performance. This is

encouraging, since RLS algorithms are based on MSE minimization, while the OBE

e

algorithm is based on minimizing ellipsoidal membership sets in a geometrical sense.
Though these two schemes minimize different quantities, it can be seen in Figures 4.3-4.5
that SMM(OBE) does in fact perform very well with respect to the MSE minimization
criterion of RLS, especially in the region of low SNR values. At higher SNR levels,
however, SMM(OBE) occasionally, but not consistently, yicided values of SSMSE which
exceed significantly those of SMM(RLSFF). This was especially evident in simulation
case 1) (Figure 4.3), but can also be seen to some degree in each of the curves. Thus it
might be conjectured that anomalous SSMSE behavior is more prone to occur in
SMM(OBE) at higher SNR's than at lower values. In particular, for negative SNR levels,
all the simulation curves in Figures 4.3-4.5 indicate consistently good SMM(OBE)

] n performance. The apparent anomalous behavior was observed always when the SNR was

greater than zero,

The above observations suggest near optimurn performance of SMM(OBE) with
respect to the SSMSE criterion, especially at low SNR's. Next, the ransient characteristics
of the learning curve will be addressed and it will be seen that SMM(OBE) actually exhibits
superior wansient behavior to that of SMM(RLSFF) at low SNR's.

Transient MSOE behavior

In many applications (especially time-varying cases) the best steady-state
performance may not be the only important concern. The manner in which the steady state
is achieved may also be of extreme mmportance. Examination of the learning curve also

provides much insight into this transient behavior.
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Upon viewing the learning curves of SMM(RLSFF) and SMM(OBE) for each
SNR, some very interesting characteristics were observed. In most cases the learning
curves obtained when using SMM(RLSFF) exhibited much higher peaks at smaller values
of n compared to that of SMM(OBE). Though this usually occurred, it was especially
evident at low SNR's, where SMM(RLSFF) peaked at huge values of MSOE compared to
the peaking of SMM(OBE). See again Figure 4.2 for an example of this behavior.

However, as with the SSMSE comparisons, some seemingly anomalous behavior
was observed in the learning curve of SMM(OBE) at some higher SNR's. In fact, the
same SNR's which yielded higher SSMSE yielded very peculiar learning curves. As can
be seen in Figure 4.3a, this unusual behavior was exhibited in simulation case 1) at the
SNR's of 6 and 10 dB. The corresponding learning curves are shown in Figures 4.6 and
4.7. Referring to Figure 4.6, it is seen that both algorithms peak at about the same time
and magnitude. The SMM(OBE) learning curve of Figure 4.6b shows that up to
approximately 150 iterations, SMM(OBE) appears to be converging smoothly as it did in
most of the other simulations (i.e. see Figure 4.2b). However, after this point, the learning
curve exhibits erratic behavior and subsequently does not settle to a level comparable to
SMM(RLSFF). In Figure 4.7, both learning curves appear on the same plot for
comparison. Referring to Figure 4.7a, it is seen that the peak of the learning curve of
SMM(OBE) is significantly higher than that of SMM(RLSFF), though they both reach
steady state at about the same time. To observe the steady state characteristics of the
curves, the portion of Figure 4.7a from 800 to 1000 iteratdons was expanded in Figure

4.7b. Erratic steady state behavior of the leamning curve of SMM(OBE) is again observed.
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An additional phenomenon of anomalous behavior was found in SMM(RLSFF),
which was surprising. In simulation case 2) at the low SNR's of -2 and -10 dB,
SMM(RLSFF) took very long to converge compared to both SMM(OBE) at those SNR's
as well as itself at all other SNR's. See figures 4.8 and 4.9 for these learning curves.
Since there is so much peaking at low values of n, the curves of Figures 4.8a and 4.9a
were viewed starting from n=500 in Figures 4.8b and 4.9b in order to see the actual point
at which steady state was achieved. It can be seen that in both cases, more than 800
iterations were needed for SMM(RLSFF) to achieve steady state. Figures 4.8c and 4.9¢
show the learning curves yielded by SMM(OBE) for the same simulation cases, and it can

be seen that SMM(OBE) converged smoothly in less than 200 iterations, as it did for all

cases of negative SNR.
15000
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10008 |-
)
o -
m =y
p
5008 |-
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9 200 499 699 se0 1009

Figure 4.8a Simulation case 2) learning curve for SMM(RLSFF). SNR=-2dB
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Figure 4.9¢c Simulation case 2) learning curve for SMM(OBE). SNR=-10dB

4.1.3 Summary of Simulations

To summarize the observations of the preceding section, a few key points will be
reiterated here. First of all, both SMM(RLSFF) and SMM(OBE) performed well in the
cases studied. However, unusual behavior of both algorithms was found which seemed to
follow a rend with respect to varying SNR levels. In particular, at a few low SNR's,
which were negative, SMM(RLSFF) was found to converge very slowly. SMM(OBE), on
the other hand, converged very rapidly for all simulation cases at every SNR less than zero.
This might suggest a greater dependability of SMM(OBE) with respect to SMM(RLSFF) in
the presence of higher noise levels. At larger SNR's (20), SMM(RLSFF) appears to be
the more dependable aigorithm, as SMM(OBE) was seen not to converge very well in a

few cases.
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Also worthy of mention are two observations made on the performance of
SMM(OBE) as the SNR varied. The first observation was a consistent increase in the

amount of data used by SMM(OBE) (i.e. the number of updates to 8) as the noise level

increased (i.e. SNRJ). This is an interesting and inwitively satisfying property for an

information-dependent updating scheme to have. It seems reasonable that as the signal gets

T

1 more and more corrupted by noise, the aigorithm needs to take more and more "looks" at it

to extract the proper information. Out of 1000 iterations, the average number of updates
used in 10 independent runs of SMM(OBE) and the corresponding SNR values for each of
the simulation cases are shown in Table 1, where the inverse relationship between the SNR

and the number of updates is evident for ali but a few increments in the SNR. Note in only

T TR

2> i

one simulation did the amount of data used for updating 8 exceed 10% of the total data. In

fact, for most cases, the parameter estimates were updated i=ss than 8% of the time.

TABLE 1

Average Number of Updates of SMM(OBE)
SNR(dB) Case 1) Case 2) Case 3)

~10 88.5 97.7 76.0
-3 80.0 104.5 65.8

-6 71.8 71.9 60.8

4 66.3 70.2 58.5

=2 68.3 65.2 62.2

i 0 67.5 52.6 63.6
3 2 65.7 42.4 53.6
4 45.0 41,9 515

6 43.6 42.3 60.3

8 36.2 42.7 60.4

10 29.5 45.8 523

The second of the observations made on SMM(OBE) was an insensitivity of the
vperation of the algonthm with respect to the choice of the magnitude bound or the noise,
(- This characterisuc has also been observed in other OBE algorithms as well [Rao89,

Sec.3.4]. This observation was made through the following experiment. Initially, the
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noise bound, ¥, was chosen to agree with the noise level when the SNR was 0 dB. This
value of v was used for the SNR's ranging trom -10 to 10 dB. Note that for low SNR's
(<0), the noise bound at O dB is not a bound at all. and at high SNR's (>0), the () dB
bound is too large, which could degrade performance. In particular, since the noise

distribution was chosen to be uniform with zero mean, its magnitude bound can be

calculated using the formula:
30,
YSNR(dB; = SNR

Note that on the right side of this equation, the SNR is not in dB's. This calculation for
SNR = 0, ~10, and 10 dB yields yp=V3=1.73, ¥_;0=V30=5.48, and y,(=v0.3=0.548.
These calculations yield a factor of ¥10=3.16 underestimation or overestimation for the
simulations using SNR's of —-10 and 10 dB, respectively. In spite of these misjudgments
in ¥, SMM(OBE) was observed to perform virtually identically to when the proper bound
was used. It thus appears that the performance of SMM(OBE) is insensitive to the

accuracy of ¥.

Practcally, this is a very important property for an OBE algorithm to have, since iz
is often not possible to meet certain assumptions of any algorithm exactly. It is therefore
crucial that a deviation of the true conditions from the ideal case does not cause a complete
failure in performance, a robustness property. Thus it appears that SMM(OBE) can be

described as being robust with respect to the choice of the noise bound used.

4.2 A Proposal of Two New Output Error Adaptive Algorithms

The final results of this thesis involve an RLS-type derivanon of algorithms for use
with the output error adaptive system. By utilizing some previously derived expressions

for the output error, oe(n), and its gradient, two algorithms can be derived which are

1

&
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identical to the RPE algonthms of Section 3.2.2. except for the construction of the matrix
R(n). Further investigations — Loth simulations and analysis — are needed to determine the

convergence properties of these algorithms.

Proceeding as in Section 3.2, it is desired to minimize the criterion Jig(n) of (3.11)

with oe(n) as the error term:
n
JLs(n) = ¥ 0eX(i)
i=1

Again, taking derivatives with respect to the least-squares estimate after n iterations, B(n),

and setting to z2ro gives:

n doe(l)
2 4.2
ZO&(I de(n) (4.2)

This expression will be implemented in two different ways, giving rise t0 two algorithms
which are slightly different than RPE and have an appearance similar to the instrumental

variable method [Lj83,Sec.2.2.2), as will be discussed in Section 4.2.3.

$.2.1 Algorithm #}

From Section 2.1.2, oe(i)=y(i)-y(i), where

¥(0) = B-1)pqeli) (4.3)

Now from (3.9) of Section 3.1.2, and assuming slow adaptation of the adaptive filter
coefficients, the expression for the derivauve of oeti) (which is the wanspose of the
gradient) is:

doe(i) _ _doe(i) -1
de(n) db(n-1) A(q-l -1)“’ o) = -<P (1)

4.4)
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where the prime denotes autoregressive filtering by the denominator polynomial of the

adaptve filter. Substituting (4.4) and (4.3) into (4.2) and dividing through by -2 vields:

n

2Ly - §Tm)gee o, (1) =0

i=l
Solving for é(n) gives:

noo 'I—l n
O =| Z 0005, J > Qocy)
= i=1

Similar to Section 3.2.1, a recursive formulation can be derived, yielding:

8(n) = 8(n-1) + R-(n)p,(n)oe(n) (4.52)
where
n [} ]
R®) = 2 0s0050) = RO-1) + 0,00 (e) (4.5b)

Examination of (4.5) shows this algorithm to be identcal to the RPE algorithm, except for
the construction of R(n). Here both a filtered and unfiltered version of the regressor,

Poe(n), is used.

4,2.2 Algorithm #2

For this algorithm, the alternative expression (2.13) is used for oe(n) in (4.2),

which is repeated here:

1 N
ee(n) = ) [y(m)-8T(n-1)pee(n) ]
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89
= yi(n) - 8T(n-Dp_(n) (4.6)

Here, again, a primed quantity stands for a quantity which is autoregressively filtered by

the denominator polynomial of the adaptive filter.

T - = — - Ty - T T

Proceeding as before, (4.6) and (4.4) are now substituted into (4.2), yielding the
following equation:

n
% [y'6) - 6T, 0 og(m) =0

i=
Solving for 8(n) yields:
no . 1n .
0 =| & 0, D0g® | 24y D00

The recursive version of the above expression for 6(n) is:

B(n) = 8(n-1) + R-1(m)g,(n) oe(n) (4.72)
where
n ) ] ' +
' R®) = & 05,0, () = Ra1=1) + Qoy(n)0e (1) (4.7b)

4.3.3 Discussion of the Aigorithms

TRT

An interesung characteristic of these algorithms that distinguishes them from the
RPE method is that they use two different vectors in the calculation of R(n). This feature is

reminiscent of the mstrumental variable method [Lj83, Sec.2.2.2]. The instrumental

£
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variable method is an algorithm for adapting an equation error adaptive filter, and is

identcal to either (4.5) or (4.7) with the following substitutions:

. 4. 4Ty
9. E ) P o)

' 4.5 4.
9. € 90 D gogn)

oe(n) (g) ee(n) (g) oe(n)

The vector {(n) is called the instrumental variable, which can be chosen in many ways.

See [Lj83, Sec.2.2.2 and 3.6.3] for discussions on this subject.

A final comment regarding the algorithm (4.7) is worth mentioning. Since this
algorithm uses both the equation error regressor as well as the usual output error regressor,
it would be interesting - and certainly exciting - to see whether this method exhibits
characteristics of equation error adaptive schemes. Of particular interest is whether this
algorithm possesses a unimodal performance surface such as the SMM algorithms, which

also combine elements of equation error and output error schemes.
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